Upper Bound of Sets and Sequences: Analyzing Logic

Click For Summary
SUMMARY

The discussion centers on the definitions and logical equivalences of upper bounds for sets and sequences in real numbers. An upper bound for a set \( A \) is defined as \( M \in \mathbb{R} \) such that \( \forall \alpha \in A, \alpha \leq M \). Conversely, for a sequence \( (a_n) \), \( M \) is an upper bound if \( \forall n \in \mathbb{N}, a_n \leq M \). The participants explore the logical transitions between these definitions, emphasizing that while every element of \( A \) can be represented by a sequence, the equivalence of the two definitions requires careful formalization and logical proof.

PREREQUISITES
  • Understanding of upper bounds in real analysis
  • Familiarity with set builder notation
  • Knowledge of logical implications and quantifiers
  • Basic concepts of sequences and their properties
NEXT STEPS
  • Study the formal definitions of upper bounds in real analysis
  • Learn about logical equivalences and implications in mathematical proofs
  • Explore set theory and its applications in sequences
  • Review examples of formal proofs involving upper bounds
USEFUL FOR

Mathematicians, students of mathematics, and anyone interested in understanding the logical foundations of set theory and sequences, particularly in the context of real analysis.

CGandC
Messages
326
Reaction score
34
Upper bound definition for sets: $ M \in \mathbb{R} $ is an upper bound of set $ A $ if $ \forall \alpha\in A. \alpha \leq M$
Upper bound definition for sequences: $ M \in \mathbb{R} $ is an upper bound of sequence $ (a_n)$ if $ \forall n \in \mathbb{N}. a_n \leq M$
Suppose we look at the set $ A = \{ a_n | n \in \mathbb{N} \} $ .

I've been pondering for a while about the following 2 questions related to mathematical-writing , logic and set builder notation:

Questions:
1. How do we get using logic from the definition of upper bound for sets to the definition of the upper bound for sequences using the set $ A = \{ a_n | n \in \mathbb{N} \} $? My reasoning:
$ \forall \alpha \in A . \alpha \leq M \iff \forall \alpha.( \alpha\in A \rightarrow \alpha \leq M ) \iff $ $\forall \alpha.( \alpha \in A \rightarrow \exists n \in \mathbb{N}. \alpha = a_n \rightarrow \alpha \leq M ) \iff $ $ \forall \alpha.( \alpha \in A \rightarrow \exists n \in \mathbb{N}. \alpha = a_n \rightarrow \alpha \leq M \rightarrow a_n \leq M) $ Hence $ \forall \alpha \in A \exists n \in \mathbb{N}.( \alpha=a_n \land a_n\leq M $ ), now, this is not equivalent to the definition of upper bound of sequences above ( $ \forall n \in \mathbb{N}. a_n \leq M$ ), why? can you please give correct transitions? I think I made mistakes but It's confusing me to see how to write them correctly.

2. Someone told me that since every element of $ A = \{ a_n | n \in \mathbb{N} \} $ is generated by every element of $ n \in \mathbb{N} $ so therefore $ \forall \alpha\in A. \alpha \leq M$ is equivalent to $ \forall n \in \mathbb{N}. a_n \leq M$ .
How is that possible that the two statements are equivalent? Since for arbitrary $ \alpha \in C $ there exists a specific $ n \in N $ ( not arbitrary ) therefore it appears false to write $ \forall n \in \mathbb{N}. a_n \leq M$ but seems more reasonable to write $ \exists n \in \mathbb{N}. a_n \leq M$ .
 
Physics news on Phys.org
The complete and correct formalization of the above statatments are the following :

1)$M\in R$ is an upper bound of $A\subseteq R$ iff (and not if) $\forall a(a\in A\Rightarrow a\leq M)$

2)$M\in R$ is an upper bound of the sequence $(a_n)$ iff $\forall n ( a_n\leq M)$

OR

1)A, $A\subseteq R$ is bounded from above iff ) $\forall a((a\in A\Rightarrow\exists M(M\in R\wedge( a\leq M))$

2) $(a_n)\subseteq R$ is bounded from above iff $\forall n\exists M (M\in R\wedge (a_n\leq M)$

So depending on the words of the definition there different ways to formalise the definition

Also you do not use logic for formalizing a mathematical statement

To prove that two statement are equivalent you have to use logic

Now according to the words expressing that A has an upper bound M you can use the appropriate formalization
 
Thanks, I understand now.
 
I must also point out that only complet and correct formalization will allow you to write a correct formal proof
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
1
Views
2K