Using Limit Definition of the Derivative?

Click For Summary
Using the limit definition of a derivative, if the limit exists and is not undefined, it indicates that the derivative at that point exists. However, for a function to be differentiable at a point, it must also be continuous and smooth at that point. The example of f(x) = (x^2)(sinx) at x=0 illustrates that finding a limit of 0 confirms differentiability at that point. In contrast, more complex functions like the Cantor function raise questions about continuity and differentiability, highlighting that not all functions that are continuous are differentiable. Therefore, while the limit definition is crucial, continuity and smoothness also play essential roles in determining differentiability.
SopwithCamel
Messages
2
Reaction score
0
If one uses the limit definition of a derivative (lim of (f(x)-f(a)) / (x-a)) as x approaches a) on a function and you get a value (ie. it is not undefined) does that mean the derivative of the function at that point exists? In other words, even if the limit definition of the derivative works, do you still need to determine whether the function is continuous, smooth and non-vertical at x=a in order to know that the function is differentiable at x=a?

For example,

The derivative of f(x)=(x^2)(sinx) at x=0 is 0 (using limit definition). Is that all the proof needed to show that the function is differentiable at x=0?
 
Physics news on Phys.org
A function is differentiable at a point if the limit of the Newton quotients exist at that point.
try to convince yourself that the function is automatically continuous at the point
 
SopwithCamel said:
If one uses the limit definition of a derivative (lim of (f(x)-f(a)) / (x-a)) as x approaches a) on a function and you get a value (ie. it is not undefined) does that mean the derivative of the function at that point exists?

http://www.mathcs.org/analysis/reals/cont/derivat.html
You'd normally just say $$f^\prime(a)=\lim_{(x-a)\rightarrow 0}\frac{f(a+(x-a))-f(a)}{x-a}$$... follows from the definition of a derivative. If the limit exists then the function is differentiable at point a by definition. (I wrote it like that to draw a link with the general definition of the derivative.))

In other words, even if the limit definition of the derivative works, do you still need to determine whether the function is continuous, smooth and non-vertical at x=a in order to know that the function is differentiable at x=a?
Well, in each of those cases, the limit won't converge will it? Well... the above is basically a one-sided limit: see below.

The derivative of f(x)=(x^2)(sinx) at x=0 is 0 (using limit definition). Is that all the proof needed to show that the function is differentiable at x=0?
In this case, yep.
However, it gets conceptually hairy when we include things like the Cantor function.

Is the Cantor function "continuous"? Is it differentiable?
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 20 ·
Replies
20
Views
2K