Using Momentum Principle to Find Ratio of Speeds?

  • Thread starter Thread starter Spooky123
  • Start date Start date
  • Tags Tags
    Momentum Velocity
AI Thread Summary
The discussion centers on applying the momentum principle to derive the ratio of speeds between two ions, one being a hydrogen ion and the other having a mass 12 times greater. The initial velocity of both ions is zero, leading to an average velocity expression of Vavg = vf/2. Using the momentum principle, the relationship between force, mass, and velocity is established, resulting in a ratio of speeds calculated as 1/12, which is deemed incorrect. Participants emphasize that the problem should solely utilize momentum and velocity equations without involving acceleration, and there is confusion regarding a numerical answer presented without units, questioning its relevance to the task of deriving a velocity expression.
Spooky123
Messages
3
Reaction score
0
Homework Statement
Two different experiments are performed. In the first experiment, a constant force is applied to a hydrogen ion. In the second experiment, the same constant applied force is applied to an ion that has a mass 12 times the mass of hydrogen. In each experiment, the ion is at rest at location A. Note that this force is much larger than any possible gravitational force on the ions, so you can neglect gravity.
Relevant Equations
Derive an expression for the final y-velocity of an ion as a function of its mass, the time interval At, and the force on the ion F.

Pf = Pi + FnetT
Vavg = v1 + v2 / 2
Vavg = r/t
Given that the ions are initially at rest my initial velocity is 0. Therefore my Vavg is equal to vf/2
Using the formula Vavg = Change in positon/time, I can solve vf to be equal to 2r/t.

Using the momentum principle, I get an equation of 2r/t = FnetT/12m -> Given that the mass of the ion is 12x Hydrogen.

However, when I solve for FnetT/12m divided by FnetT/m I get a ration of 1/12. Which is incorrect...

This question should only use the momentum principle and velocity equations without having to involve acceleration.
 
Physics news on Phys.org
Spooky123 said:
Homework Statement: Two different experiments are performed. In the first experiment, a constant force is applied to a hydrogen ion. In the second experiment, the same constant applied force is applied to an ion that has a mass 12 times the mass of hydrogen. In each experiment, the ion is at rest at location A. Note that this force is much larger than any possible gravitational force on the ions, so you can neglect gravity.
Relevant Equations: Derive an expression for the final y-velocity of an ion as a function of its mass, the time interval At, and the force on the ion F.

Pf = Pi + FnetT
Vavg = v1 + v2 / 2
Vavg = r/t

Given that the ions are initially at rest my initial velocity is 0. Therefore my Vavg is equal to vf/2
Using the formula Vavg = Change in positon/time, I can solve vf to be equal to 2r/t.

Using the momentum principle, I get an equation of 2r/t = FnetT/12m -> Given that the mass of the ion is 12x Hydrogen.

However, when I solve for FnetT/12m divided by FnetT/m I get a ration of 1/12. Which is incorrect...

This question should only use the momentum principle and velocity equations without having to involve acceleration.
If you are acting on both ions for the same amount of time, then
##v = v_0 + aT##

Assuming that ##v_0 = 0## m/s for both, then
##v = aT##.

Now, ##F = ma##, so
##v = \dfrac{FT}{m}##

So, for Hydrogen:
##v = \dfrac{FT}{m}##

Let's call the other ion carbon. So for carbon:
##V = \dfrac{FT}{12m}##

The ratio of these will be

##\dfrac{V}{v} = \dfrac{1}{12}##

as you said above.

-Dan
 
Spooky123 said:
Pf = Pi + FnetT
This question should only use the momentum principle and velocity equations without having to involve acceleration.
You have all the ingredients above to do what you are asked. Remember that pi = 0. You don't need any velocity or acceleration equations.
 
The correct answer for this question is 0.2889. I guess it might be an error.
 
Spooky123 said:
The correct answer for this question is 0.2889. I guess it might be an error.
How can the correct answer be a number (with no units) when the task is to "Derive an expression for the final y-velocity of an ion as a function of its mass, the time interval At, and the force on the ion F"?
 
  • Like
Likes topsquark and nasu
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top