Undergrad Proving Convexity of the Set X = {(x, y) E R^2; ax + by <= c} in R^2

Click For Summary
The discussion focuses on proving the convexity of the set X = {(x, y) ∈ R²; ax + by ≤ c} in R². The definition of a convex set is outlined, emphasizing that for any two points u and v in X, the line segment connecting them must also lie within X. The proof involves showing that a linear combination of two points satisfying the inequality also satisfies the same inequality. Participants clarify the steps needed to demonstrate that the combination (1-t)u + tv remains in the half-plane defined by ax + by ≤ c. Ultimately, the proof confirms that the set X is indeed convex.
bonildo
Messages
14
Reaction score
1
This exercise is located in the vector space chapter of my book that's why I am posting it here.
Recently started with this kind of exercise, proof like exercises and I am a little bit lost
Proof that given a, b, c real numbers, the set X = {(x, y) E R^2; ax + by <= c} ´is convex at R^2

the definition of convex set in the book is given like that: u, v E X => [u, v] C X
and [u,v]={ (1-t)u+tv ; 0<=t<=1}Didnt do much, just that :
u=(x1,y1) and ax1+by1<c
v=(x2,y2) and ax2+by2<c

and that [u,v]={(1-t)x1+tx2,(1-t)y1+ty2)}
 
Physics news on Phys.org
Okay, you have ##ax_1+by_1\leq c## and ##ax_2+by_2\leq c##. Try multiplying the two inequalities by ##1-t## and ##t##, respectively, and then adding.
 
Infrared said:
Okay, you have ##ax_1+by_1\leq c## and ##ax_2+by_2\leq c##. Try multiplying the two inequalities by ##1-t## and ##t##, respectively, and then adding.

Ok, got to a((1-t)x1+tx2)+b((1-t)y1+ty2)<=c . But why it proof that X is convex ?
 
You just have to try to apply the exact definition of convex to the two arbitrary points of the set defined by that inequality. This will test whether you actually understand what that definition is saying.
 
  • Like
Likes bonildo
You're trying to show that ##(1-t)u+tv## is in the half-plane ##ax+by\leq c##. You also have ##(1-t)u+tv=((1-t)x_1+tx_2,(1-t)y_1+ty_2).## So, you're trying to show that ##a\left((1-t)x_1+tx_2\right)+b\left((1-t)y_1+ty_2\right)\leq c.## But this is the inequality you just wrote

bonildo said:
Ok, got to a((1-t)x1+tx2)+b((1-t)y1+ty2)<=c . But why it proof that X is convex ?
 
  • Like
Likes bonildo
Infrared said:
You're trying to show that ##(1-t)u+tv## is in the half-plane ##ax+by\leq c##. You also have ##(1-t)u+tv=((1-t)x_1+tx_2,(1-t)y_1+ty_2).## So, you're trying to show that ##a\left((1-t)x_1+tx_2\right)+b\left((1-t)y_1+ty_2\right)\leq c.## But this is the inequality you just wrote
got it , thanks
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K