Velleman problem 14(a) section 7.3

  • Context: MHB 
  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Section
Click For Summary
SUMMARY

The discussion centers on proving that \( ^{\mathbb{R}}\mathbb{R}\;\sim\;\mathcal{P}(\mathbb{R}) \) using established mathematical principles. The proof employs the Cantor-Schroder-Bernstein theorem and transitive properties of cardinality, demonstrating that \( \mathbb{R}\;\precsim\;\mathcal{P}(\mathbb{R}) \) and \( ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\sim\;\mathcal{P}(\mathbb{R}) \). Key identities and relationships, such as \( \mathbb{R}\times\mathbb{R}\;\sim\;\mathbb{R} \) and \( ^{A}C\;\precsim\;^{B}D \), are utilized to establish the equivalence definitively. The proof is confirmed to be valid with suggestions for streamlining transitions between statements.

PREREQUISITES
  • Understanding of cardinality and set theory
  • Familiarity with the Cantor-Schroder-Bernstein theorem
  • Knowledge of transitive properties in mathematical proofs
  • Basic concepts of power sets, specifically \( \mathcal{P}(\mathbb{R}) \)
NEXT STEPS
  • Study the Cantor-Schroder-Bernstein theorem in detail
  • Explore advanced set theory concepts, including cardinality comparisons
  • Learn about transitive relations and their applications in proofs
  • Investigate the implications of power sets in different mathematical contexts
USEFUL FOR

Mathematicians, students of set theory, and anyone interested in the foundations of cardinality and mathematical proofs will benefit from this discussion.

issacnewton
Messages
1,035
Reaction score
37
Hi
I have to prove that \( ^{\mathbb{R}}\mathbb{R}\;\sim\;\mathcal{P}(\mathbb{R}) \).
My attempt is here. \( \mathbb{R}\;\sim\;\mathbb{R} \Rightarrow \mathbb{R}\;\precsim\;\mathbb{R}\). Since
\( \{0,1\}\subseteq \mathbb{R}\Rightarrow \{0,1\}\;\precsim\;\mathbb{R}\) . I am going to make use of the rule which I have proven.
if \(A\neq\varnothing\) and \( A\;\precsim\; B\) and \( C\;\precsim\; D \) then \( ^{A}C\;\precsim\; ^{B}D \). So we get
\( ^{\mathbb{R}}\{0,1\}\;\precsim\; ^{\mathbb{R}}\mathbb{R} \). Since \( \mathcal{P}(\mathbb{R})\;\sim\; ^{\mathbb{R}}\{0,1\} \), it
follows that \( \mathcal{P}(\mathbb{R})\;\precsim\; ^{\mathbb{R}}\{0,1\} \). So using transitivity of \( \precsim \) we get
\( \mathcal{P}(\mathbb{R})\;\precsim\;^{\mathbb{R}} \mathbb{R} \cdots (E1)\). Now

\[ ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\sim\;^{ \mathbb{R}}( ^{\mathbb{R}}\{0,1\})\;\sim\;^{(\mathbb{R}\times \mathbb{R})}\{0,1\} \]

But since \( \mathbb{R}\times\mathbb{R}\;\sim\; \mathbb{R} \) we have

\[ ^{(\mathbb{R}\times\mathbb{R})}\{0,1\}\;\sim\; ^{\mathbb{R}}\{0,1\}\;\sim\; \mathcal{P}(\mathbb{R}) \]

which implies, due to the transitivity of \( \sim \)

\[ ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\sim\; \mathcal{P}(\mathbb{R}) \]

\[ \Rightarrow ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\precsim\; \mathcal{P}(\mathbb{R}) \]

Now

\[ \mathbb{R}\;\precsim\;\mathcal{P}(\mathbb{R}); \; \mathbb{R}\;\precsim\; \mathbb{R} \]

since \( \mathbb{R}\neq \varnothing \) , we get

\[ ^{\mathbb{R}}\mathbb{R}\;\precsim\; ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\precsim\; \mathcal{P}(\mathbb{R}) \cdots (E2)\]

Using E1 and E2 , it follows from Cantor-Schroder-Bernstein theorem, that

\[ ^{\mathbb{R}}\mathbb{R}\;\sim\;\mathcal{P}(\mathbb{R}) \]

does it seem ok ? I have already proved all the identities I am using here...
 
Physics news on Phys.org
Yes, this also seems fine. Some transitions can be shortened: for example, from $A\precsim B$ and $B\sim C$ you can directly conclude $A\precsim C$ without stating that $B\precsim C$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K