MHB Velleman problem 14(a) section 7.3

  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Section
Click For Summary
The discussion focuses on proving that \( ^{\mathbb{R}}\mathbb{R} \sim \mathcal{P}(\mathbb{R}) \) using established mathematical principles. The user demonstrates that since \( \mathbb{R} \sim \mathbb{R} \) implies \( \mathbb{R} \precsim \mathcal{P}(\mathbb{R}) \), and through transitive properties, they establish relationships between sets and their power sets. They utilize the Cantor-Schroder-Bernstein theorem to conclude the equivalence. Suggestions are made for simplifying some transitions in the proof. The overall approach and reasoning appear sound and valid.
issacnewton
Messages
1,035
Reaction score
37
Hi
I have to prove that \( ^{\mathbb{R}}\mathbb{R}\;\sim\;\mathcal{P}(\mathbb{R}) \).
My attempt is here. \( \mathbb{R}\;\sim\;\mathbb{R} \Rightarrow \mathbb{R}\;\precsim\;\mathbb{R}\). Since
\( \{0,1\}\subseteq \mathbb{R}\Rightarrow \{0,1\}\;\precsim\;\mathbb{R}\) . I am going to make use of the rule which I have proven.
if \(A\neq\varnothing\) and \( A\;\precsim\; B\) and \( C\;\precsim\; D \) then \( ^{A}C\;\precsim\; ^{B}D \). So we get
\( ^{\mathbb{R}}\{0,1\}\;\precsim\; ^{\mathbb{R}}\mathbb{R} \). Since \( \mathcal{P}(\mathbb{R})\;\sim\; ^{\mathbb{R}}\{0,1\} \), it
follows that \( \mathcal{P}(\mathbb{R})\;\precsim\; ^{\mathbb{R}}\{0,1\} \). So using transitivity of \( \precsim \) we get
\( \mathcal{P}(\mathbb{R})\;\precsim\;^{\mathbb{R}} \mathbb{R} \cdots (E1)\). Now

\[ ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\sim\;^{ \mathbb{R}}( ^{\mathbb{R}}\{0,1\})\;\sim\;^{(\mathbb{R}\times \mathbb{R})}\{0,1\} \]

But since \( \mathbb{R}\times\mathbb{R}\;\sim\; \mathbb{R} \) we have

\[ ^{(\mathbb{R}\times\mathbb{R})}\{0,1\}\;\sim\; ^{\mathbb{R}}\{0,1\}\;\sim\; \mathcal{P}(\mathbb{R}) \]

which implies, due to the transitivity of \( \sim \)

\[ ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\sim\; \mathcal{P}(\mathbb{R}) \]

\[ \Rightarrow ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\precsim\; \mathcal{P}(\mathbb{R}) \]

Now

\[ \mathbb{R}\;\precsim\;\mathcal{P}(\mathbb{R}); \; \mathbb{R}\;\precsim\; \mathbb{R} \]

since \( \mathbb{R}\neq \varnothing \) , we get

\[ ^{\mathbb{R}}\mathbb{R}\;\precsim\; ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\precsim\; \mathcal{P}(\mathbb{R}) \cdots (E2)\]

Using E1 and E2 , it follows from Cantor-Schroder-Bernstein theorem, that

\[ ^{\mathbb{R}}\mathbb{R}\;\sim\;\mathcal{P}(\mathbb{R}) \]

does it seem ok ? I have already proved all the identities I am using here...
 
Physics news on Phys.org
Yes, this also seems fine. Some transitions can be shortened: for example, from $A\precsim B$ and $B\sim C$ you can directly conclude $A\precsim C$ without stating that $B\precsim C$.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
910