MHB Velleman problem 14(a) section 7.3

  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Section
AI Thread Summary
The discussion focuses on proving that \( ^{\mathbb{R}}\mathbb{R} \sim \mathcal{P}(\mathbb{R}) \) using established mathematical principles. The user demonstrates that since \( \mathbb{R} \sim \mathbb{R} \) implies \( \mathbb{R} \precsim \mathcal{P}(\mathbb{R}) \), and through transitive properties, they establish relationships between sets and their power sets. They utilize the Cantor-Schroder-Bernstein theorem to conclude the equivalence. Suggestions are made for simplifying some transitions in the proof. The overall approach and reasoning appear sound and valid.
issacnewton
Messages
1,035
Reaction score
37
Hi
I have to prove that \( ^{\mathbb{R}}\mathbb{R}\;\sim\;\mathcal{P}(\mathbb{R}) \).
My attempt is here. \( \mathbb{R}\;\sim\;\mathbb{R} \Rightarrow \mathbb{R}\;\precsim\;\mathbb{R}\). Since
\( \{0,1\}\subseteq \mathbb{R}\Rightarrow \{0,1\}\;\precsim\;\mathbb{R}\) . I am going to make use of the rule which I have proven.
if \(A\neq\varnothing\) and \( A\;\precsim\; B\) and \( C\;\precsim\; D \) then \( ^{A}C\;\precsim\; ^{B}D \). So we get
\( ^{\mathbb{R}}\{0,1\}\;\precsim\; ^{\mathbb{R}}\mathbb{R} \). Since \( \mathcal{P}(\mathbb{R})\;\sim\; ^{\mathbb{R}}\{0,1\} \), it
follows that \( \mathcal{P}(\mathbb{R})\;\precsim\; ^{\mathbb{R}}\{0,1\} \). So using transitivity of \( \precsim \) we get
\( \mathcal{P}(\mathbb{R})\;\precsim\;^{\mathbb{R}} \mathbb{R} \cdots (E1)\). Now

\[ ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\sim\;^{ \mathbb{R}}( ^{\mathbb{R}}\{0,1\})\;\sim\;^{(\mathbb{R}\times \mathbb{R})}\{0,1\} \]

But since \( \mathbb{R}\times\mathbb{R}\;\sim\; \mathbb{R} \) we have

\[ ^{(\mathbb{R}\times\mathbb{R})}\{0,1\}\;\sim\; ^{\mathbb{R}}\{0,1\}\;\sim\; \mathcal{P}(\mathbb{R}) \]

which implies, due to the transitivity of \( \sim \)

\[ ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\sim\; \mathcal{P}(\mathbb{R}) \]

\[ \Rightarrow ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\precsim\; \mathcal{P}(\mathbb{R}) \]

Now

\[ \mathbb{R}\;\precsim\;\mathcal{P}(\mathbb{R}); \; \mathbb{R}\;\precsim\; \mathbb{R} \]

since \( \mathbb{R}\neq \varnothing \) , we get

\[ ^{\mathbb{R}}\mathbb{R}\;\precsim\; ^{\mathbb{R}}\mathcal{P}(\mathbb{R})\;\precsim\; \mathcal{P}(\mathbb{R}) \cdots (E2)\]

Using E1 and E2 , it follows from Cantor-Schroder-Bernstein theorem, that

\[ ^{\mathbb{R}}\mathbb{R}\;\sim\;\mathcal{P}(\mathbb{R}) \]

does it seem ok ? I have already proved all the identities I am using here...
 
Physics news on Phys.org
Yes, this also seems fine. Some transitions can be shortened: for example, from $A\precsim B$ and $B\sim C$ you can directly conclude $A\precsim C$ without stating that $B\precsim C$.
 
Back
Top