Velleman problem 5(d) section 7.2

  • Context: MHB 
  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Section
Click For Summary
SUMMARY

The discussion focuses on proving the equivalence \( ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \). The user successfully demonstrates that \( \mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}\{0,1\} \) and applies the principle that if \( A\;\sim B \) and \( C\;\sim D \), then \( ^{A}C\;\sim ^{B}D \). The proof is further supported by the established equivalence \( ^{(A\times B)}C\;\sim\; ^{A}(^{B}C) \), leading to the conclusion that \( ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \). Emo confirms the validity of the proof.

PREREQUISITES
  • Understanding of set theory and cardinality
  • Familiarity with the notation \( \mathcal{P}(X) \) for power sets
  • Knowledge of equivalence relations in mathematics
  • Concept of infinite sets and their properties
NEXT STEPS
  • Study the properties of power sets in set theory
  • Learn about cardinality and its implications in infinite sets
  • Explore the concept of bijections and their role in proving set equivalences
  • Investigate advanced topics in set theory, such as Cantor's theorem
USEFUL FOR

Mathematicians, students of set theory, and anyone interested in understanding the properties of infinite sets and their cardinalities.

issacnewton
Messages
1,035
Reaction score
37
Hi I have to prove

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \]

here is my attempt. I have proven that \( \mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}\{0,1\} \). Also I am going to use the fact that
if \( A\;\sim B \) and \( C\;\sim D \) then \( ^{A}C\;\sim ^{B}D \). So we get

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}(^{\mathbb{Z^+}} \{0,1\} ) \]

Also I have proven that for any sets A,B,C we have \( ^{(A\times B)}C\;\sim\; ^{A}( ^{B}C) \). So

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{(\mathbb{Z^+}\times \mathbb{Z^+} )} \{0,1\} \]

Since \( \mathbb{Z^+}\times \mathbb{Z^+}\;\sim \mathbb{Z^+} \) and \( \{0,1\}\;\sim \{0,1\} \) , we have

\[ ^{(\mathbb{Z^+}\times \mathbb{Z^+} )} \{0,1\}\;\sim\; ^{\mathbb{Z^+}} \{0,1\} \]

So it follows that
\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}} \{0,1\} \]

since \( \mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}\{0,1\} \) , we get

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \]

Is it ok ?

(Emo)
 
Physics news on Phys.org
Yes, I think this is fine.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K