MHB Velleman problem 5(d) section 7.2

  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Section
Click For Summary
The discussion revolves around proving that the cardinality of the power set of positive integers is equivalent to the set of functions from positive integers to the power set of positive integers. The user demonstrates their approach by establishing that the power set of positive integers is similar to the set of functions from positive integers to a binary set. They further apply established cardinality equivalences to show that the function set remains consistent under transformations. The conclusion drawn is that the original statement holds true, and a participant confirms the validity of the proof. The proof effectively illustrates the relationships between these sets and their cardinalities.
issacnewton
Messages
1,035
Reaction score
37
Hi I have to prove

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \]

here is my attempt. I have proven that \( \mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}\{0,1\} \). Also I am going to use the fact that
if \( A\;\sim B \) and \( C\;\sim D \) then \( ^{A}C\;\sim ^{B}D \). So we get

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}(^{\mathbb{Z^+}} \{0,1\} ) \]

Also I have proven that for any sets A,B,C we have \( ^{(A\times B)}C\;\sim\; ^{A}( ^{B}C) \). So

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{(\mathbb{Z^+}\times \mathbb{Z^+} )} \{0,1\} \]

Since \( \mathbb{Z^+}\times \mathbb{Z^+}\;\sim \mathbb{Z^+} \) and \( \{0,1\}\;\sim \{0,1\} \) , we have

\[ ^{(\mathbb{Z^+}\times \mathbb{Z^+} )} \{0,1\}\;\sim\; ^{\mathbb{Z^+}} \{0,1\} \]

So it follows that
\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}} \{0,1\} \]

since \( \mathcal{P}(\mathbb{Z^+})\;\sim\; ^{\mathbb{Z^+}}\{0,1\} \) , we get

\[ ^{\mathbb{Z^+}}\mathcal{P}(\mathbb{Z^+})\;\sim\; \mathcal{P}(\mathbb{Z^+}) \]

Is it ok ?

(Emo)
 
Physics news on Phys.org
Yes, I think this is fine.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K