Verify that ## x\equiv a^{p-2}b\pmod {p} ## is a solution

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around verifying that ## x\equiv a^{p-2}b\pmod {p} ## is a solution to the linear congruence ## ax\equiv b\pmod {p} ##, where ## p ## is a prime and ## gcd(a, p)=1 ##. The context involves applying Fermat's theorem in this verification process.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the implications of Fermat's theorem and its application to the linear congruence. There are discussions about the clarity of certain lines in the proofs and whether they should be included or removed.

Discussion Status

Some participants provide feedback on the proofs presented, suggesting minor adjustments for clarity. There is an ongoing examination of the reasoning behind the steps taken in the proofs, with no explicit consensus reached on the final form of the proof.

Contextual Notes

Participants question the necessity of certain lines in the proofs and discuss the implications of the solution set, noting that there are other solutions beyond the one proposed.

Math100
Messages
823
Reaction score
234
Homework Statement
Let ## p ## be a prime and ## gcd(a, p)=1 ##. Use Fermat's theorem to verify that ## x\equiv a^{p-2}b\pmod {p} ## is a solution of the linear congruence ## ax\equiv b\pmod {p} ##.
Relevant Equations
None.
Proof:

Suppose ## gcd(a, p)=1 ## where ## p ## is a prime.
Consider the linear congruence ## ax\equiv b\pmod {p} ##.
By Fermat's theorem, we have that ## a^{p-1}\equiv 1\pmod {p} ##.
Observe that ## a^{p-1}\equiv 1\pmod {p}\implies a^{p-1}b\equiv b\pmod {p}\implies a(a^{p-2}b)\equiv b\pmod {p} ##.
Thus ## ax\equiv b\pmod {p}\implies x\equiv a^{p-2}b\pmod {p} ##.
Therefore, ## x\equiv a^{p-2}b\pmod {p} ## is a solution of the linear congruence ## ax\equiv b\pmod {p} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Let ## p ## be a prime and ## gcd(a, p)=1 ##. Use Fermat's theorem to verify that ## x\equiv a^{p-2}b\pmod {p} ## is a solution of the linear congruence ## ax\equiv b\pmod {p} ##.
Relevant Equations:: None.

Proof:

Suppose ## gcd(a, p)=1 ## where ## p ## is a prime.
Consider the linear congruence ## ax\equiv b\pmod {p} ##.
By Fermat's theorem, we have that ## a^{p-1}\equiv 1\pmod {p} ##.
Observe that ## a^{p-1}\equiv 1\pmod {p}\implies a^{p-1}b\equiv b\pmod {p}\implies a(a^{p-2}b)\equiv b\pmod {p} ##.
Nice and correct so far.
Math100 said:
Thus ## ax\equiv b\pmod {p}\implies x\equiv a^{p-2}b\pmod {p} ##.
This line is a bit confusing. You can simply remove this line.
You haven't solved for ##x##. You have shown what you wrote next:

Math100 said:
Therefore, ## x\equiv a^{p-2}b\pmod {p} ## is a solution of the linear congruence ## ax\equiv b\pmod {p} ##.
##x## set as ##x:=a^{p-2}b## solves the congruence, and this was all that had to be shown.
There are other numbers that solve it as well, namely all ##x\in a^{p-2}b+p\mathbb{Z}.##
 
  • Like
Likes   Reactions: Math100
Observe that
\begin{align*}
&ax\equiv b\pmod {p}\implies ax\cdot a^{p-2}\equiv b\cdot a^{p-2}\pmod {p}\\
&\implies a^{p-1}x\equiv a^{p-2}b\pmod {p}.\\
\end{align*}
By Fermat's theorem, we have ## a^{p-1}x\equiv x\pmod {p} ##.
Thus ## x\equiv xa^{p-1}\equiv a^{p-2}b\pmod {p} ##.
 
Should I insert that above in my proof and delete what I wrote in my previous proof?
 
Math100 said:
Should I insert that above in my proof and delete what I wrote in my previous proof?
Your first proof was perfect, just one line too many. You should remove the line before last. And if you want to be perfect then write:

...
Observe that ## a^{p-1}\equiv 1\pmod {p}\implies a^{p-1}b\equiv b\pmod {p}\implies a(a^{p-2}b)\equiv b\pmod {p} ##.

Therefore, ## x:= a^{p-2}b\pmod {p} ## is a solution of the linear congruence ## ax\equiv b\pmod {p} ##.
 
  • Haha
Likes   Reactions: Math100
fresh_42 said:
Your first proof was perfect, just one line too many. You should remove the line before last. And if you want to be perfect then write:

...
Observe that ## a^{p-1}\equiv 1\pmod {p}\implies a^{p-1}b\equiv b\pmod {p}\implies a(a^{p-2}b)\equiv b\pmod {p} ##.

Therefore, ## x:= a^{p-2}b\pmod {p} ## is a solution of the linear congruence ## ax\equiv b\pmod {p} ##.
When you were in college, did you pursue perfection as well?
 
Math100 said:
When you were in college, did you pursue perfection as well?
Not really. I was more a student than a studier. That changed after the first exams.
 
  • Wow
Likes   Reactions: Math100

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K