MHB Verifying Transport Equation as a Dispersion Equation

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Transport
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Definition
A partial differential equation is called dispersion equation if it allows solutions in the form of a wave function and furthermore solutions in the form of a wave function with different wavenumbers have different velocities.
The relation between the cyclic frequency and the wavenumber at a wave function that is a solution of a pde is called dispersion relation.

I want to check if the transport equation $u_t+au_x=0, a \in \mathbb{R}$ is a dispersion equation.
I have tried the following:

We suppose that $u(x,t)=A \cos(kx-\omega t)$ is a solution of $u_t+a u_x=0, a \in \mathbb{R}$.

We have: $u_t= A \omega \sin(kx -\omega t) \\ u_x=-A k \sin(kx- \omega t)$

Thus it has to hold : $A \omega \sin(kx-\omega t)-a A k \sin(kx- \omega t)=0$ or equivalently $A(\omega-ak) sin(kx-\omega t)=0$.

So it has to hold: $\omega-ak=0$.

$u(x,t)=A \cos(kx- \omega t)$ is a solution of the transport equation iff $\omega-ak=0$.

We fix $\omega, k$ for which the above algebraic equation is satisfied.

We write the solution in the form of a traveling wave.

We have $u(x,t)= A \cos(kx-\omega t)=A \cos \left( k \left( x- \frac{\omega}{k}t \right)\right)$

Since $\omega-ak=0$ we have $\frac{\omega}{k}=a$.

So $u(x,t)=A \cos\left( k(x-at)\right)$ is a traveling wave with velocity $a$.

So we see that if $k_1, k_2>0$ wavenumbers with $k_1 \neq k_2$ then we have solutions in the form of a wave function

$$u_1(x,t)=A \cos(k_1(x-at)) \\ u_2(x,t)=A \cos(k_2(x-at))$$

that "travel" with the same velocity $a$.

Therefore, we conclude that the transport equation $u_t+au_x=0, a \in \mathbb{R}$ is not a dispersion equation.Am I right or have I done something wrong? (Thinking)
 
Last edited:
Physics news on Phys.org
Hey! (Smile)

Let's see... (Thinking)

So the speed is linear with $a$, which makes sense, and also with the amplitude $A$...
But I don't think that a wave becomes twice as fast if its amplitude is twice as high. (Worried)
Can it be there is a mistake with $A$? (Wondering)
 
I like Serena said:
Hey! (Smile)

Let's see... (Thinking)

So the speed is linear with $a$, which makes sense, and also with the amplitude $A$...
But I don't think that a wave becomes twice as fast if its amplitude is twice as high. (Worried)
Can it be there is a mistake with $A$? (Wondering)

Oh yes, right... I edited my post... Is it right now? (Thinking)
 
evinda said:
Oh yes, right... I edited my post... Is it right now? (Thinking)

Yep. I believe so. (Nod)
 
I like Serena said:
Yep. I believe so. (Nod)

Nice... Thanks a lot! (Yes)
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Replies
8
Views
2K
Replies
2
Views
2K
Replies
8
Views
3K
Replies
11
Views
2K
Replies
6
Views
3K
Replies
1
Views
3K
Replies
11
Views
3K
Back
Top