- #1

- 4

- 0

## Main Question or Discussion Point

Do share your thoughts on this statement.

- Thread starter Ostronomos
- Start date

- #1

- 4

- 0

Do share your thoughts on this statement.

- #2

- 527

- 0

Similarly, electrons, neutrons, protons, quarks, and other matter particles exhibit wave-like properties along with their obvious particle-like properties. This is observed in Thompson's double slit experiment.

- #3

- 35,718

- 4,495

Please start by reading the FAQ subforums in the general physics forum.Do share your thoughts on this statement.

Zz.

- #4

- 4

- 0

Can you possibly point me to the FAQ? I can't seem to find it.Please start by reading the FAQ subforums in the general physics forum.

Zz.

- #5

- 527

- 0

Zz is referring to this FAQ:Can you possibly point me to the FAQ? I can't seem to find it.

https://www.physicsforums.com/showthread.php?t=511178

- #6

- 4

- 0

Thank you.

- #7

bhobba

Mentor

- 9,426

- 2,474

Thanks

Bill

- #8

- 4

- 0

So if light is neither a wave or a particle then what could it be? The simplest answer is usually the most correct one so what could it be if it's neither as you say?

Thanks

Bill

- #9

- 16,174

- 6,176

I take it you did not actually READ the FAQ that you were pointed to, and still think it would be meaningful to give a classical name to something that doesn't have one. From the FAQ:So if light is neither a wave or a particle then what could it be? The simplest answer is usually the most correct one so what could it be if it's neither as you say?

Call it a quantum element or even a quantum particle, but whatever you call it, get away from any notion of definition outside of quantum mechanics.So there is no duality – at least not within quantum mechanics. We still use the “duality” description of light when we try to describe light to laymen because wave and particle are behavior most people are familiar with.However, it doesn’t mean that in physics, or in the working of physicists, such a duality has any significance.

- #10

jtbell

Mentor

- 15,549

- 3,490

It is what it is. "Wave versus particle" is a false dichotomy in quantum mechanics.So if light is neither a wave or a particle then what could it be?

- #11

- 15,057

- 6,536

After the famous interlude of the Bohr-Sommerfeld quantization conditions for the motion of electrons (particle picture!) to explain the patterns of atomic spectra, de Broglie came up with another brillant idea to describe this motion of electrons, namely the wave description, which later has been formalized by Schrödinger in his famous formulation of modern quantum mechanics as an eigenvalue problem.

In 1925 also the modern interpretation of wave mechanics and the equivalent formulations in terms of matrix mechanics (Heisenberg) and the general abstract formulation in terms of abstract Hilbert-space theory (Dirac, von Neumann) by Born has been given: The (modulus squared) wave function describes the probability distribution to find the particle at a given place. There is no wave-particle duality left in this interpretation, because the wave function doesn't refer to a physical entity like a classical field but only to the probability for the outcome of measurements on a system prepared to be in a state represented by this wave function.

- #12

bhobba

Mentor

- 9,426

- 2,474

In terms of classical pictures its not anything. Mathematically its an element of a Hilbert space as implied by the fundamental principle of QM - the superposition principle which is the rock bottom essence of quantum weirdness. If a particle can be in two states (say for example be in two definite positions) then it can partly be in both states simultaneously (which means in some sense in the case of position in two positions at the same time). That is what quantum objects are - something very weird and totally unvisualisable classically.So if light is neither a wave or a particle then what could it be? The simplest answer is usually the most correct one so what could it be if it's neither as you say?

Thanks

Bill

- #13

HallsofIvy

Science Advisor

Homework Helper

- 41,833

- 955

How is saying it is 'sometimes like a classical paricle and sometimes like a wave" NOT "wave-particle" duality. "Wave particle duality" does NOT say electrons and other thing sometimes

Thanks

Bill

- #14

- 5,601

- 39

The modern idea of quantum field theory is that quantum fields are the basic ingredients of the universe, and 'particles' are just bundles of energy and momentum of the fields.

So for example, you can think of an electron as a wave....when it's in free space the wave is everywhere, it extends all over the place. But when attracted by a proton in a nucleus, for example, that wave is now localized...it's energy is constrained and so its different from the free space case. It's very unlikely for the electron to be found between allowed energy levels. It is now 'localized'.

Think of a violin string as an analogy: the ends are constrained, so it can have only certain tones...certain vibrational patterns and associated energies. It's energy levels are constained to certain values...it's degrees of freedom are limited. Same kind of thing happens to bound electrons...in atoms, lattices, etc. Funny thing is, the behavior of the electron can also change!!

In contrast, a free electron can take on any energy level. But when it is part of an atom or a larger structure, it's constrained...it's degrees of freedom are determined and limited by the whole structure. So an electron's energy levels and degrees of freedom are determined by the numbers of protons in the nucleus as as well as the particular structure of a lattice, as examples. The Schrodinger wave equation describes these.

A good 'particle' discussion and research paper are these:

What is a particle

https://www.physicsforums.com/showthread.php?t=386051

Rovelli:

http://arxiv.org/abs/gr-qc/0409054

So for example, you can think of an electron as a wave....when it's in free space the wave is everywhere, it extends all over the place. But when attracted by a proton in a nucleus, for example, that wave is now localized...it's energy is constrained and so its different from the free space case. It's very unlikely for the electron to be found between allowed energy levels. It is now 'localized'.

Think of a violin string as an analogy: the ends are constrained, so it can have only certain tones...certain vibrational patterns and associated energies. It's energy levels are constained to certain values...it's degrees of freedom are limited. Same kind of thing happens to bound electrons...in atoms, lattices, etc. Funny thing is, the behavior of the electron can also change!!

In contrast, a free electron can take on any energy level. But when it is part of an atom or a larger structure, it's constrained...it's degrees of freedom are determined and limited by the whole structure. So an electron's energy levels and degrees of freedom are determined by the numbers of protons in the nucleus as as well as the particular structure of a lattice, as examples. The Schrodinger wave equation describes these.

A good 'particle' discussion and research paper are these:

What is a particle

https://www.physicsforums.com/showthread.php?t=386051

Rovelli:

http://arxiv.org/abs/gr-qc/0409054

Last edited:

- #15

bhobba

Mentor

- 9,426

- 2,474

Saying it is LIKE a particle in that measurements can give a definite position and LIKE a wave in that the wavefunction can have wavelike solutions is not endorsing the wave-particle duality which is basically a load of rubbish - it is neither particle or wave but sometimes has 'aspects' (I have chosen that word with care) LIKE a particle or wave. This is very clear when considering the wavefunction, the exact nature of which is very interpretation dependent. In many interpretations it is simply a device for calculating probabilities and doesn't have any real existence - that's how they get around the wavefunction collapse issue - nothing actually collapses.How is saying it is 'sometimes like a classical paricle and sometimes like a wave" NOT "wave-particle" duality. "Wave particle duality" does NOT say electrons and other thing sometimesarewaves and then magically change into particles.

To be specific the wave particle duality says quantum objects exhibit wave and particle properties. Certainly it has a particle like property when having an exact position but its wave aspect is only what you could reasonably call a property in some interpretations such as BM - in say the ensemble interpretation it is nothing concrete at all - which is why I used the word aspect.

I also appreciate you picking up my lack of clarity - much appreciated.

Thanks

Bill

Last edited:

- Replies
- 8

- Views
- 517

- Last Post

- Replies
- 8

- Views
- 2K

- Replies
- 7

- Views
- 6K

- Replies
- 26

- Views
- 5K

- Last Post

- Replies
- 1

- Views
- 1K

- Replies
- 6

- Views
- 1K

- Last Post

- Replies
- 16

- Views
- 10K

- Replies
- 30

- Views
- 2K

- Last Post

- Replies
- 3

- Views
- 3K

- Last Post

- Replies
- 1

- Views
- 877