Weekly Math Problem #82: Simplifying Trigonometric Expression

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The problem involves simplifying the expression 2 sin²(π/4 - x/2) + sin(x). Participants successfully solved the problem, with several members providing correct solutions. The key steps in the solution include applying trigonometric identities and simplifying the expression systematically. The discussion highlights the collaborative effort in arriving at the final simplified form. Overall, the thread showcases effective problem-solving techniques in trigonometry.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Simplify $$2 \sin^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)+\sin(x)$$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) Chris L T521
4) kaliprasad
5) soroban

Solution (from soroban):
\text{Simplify: }\:2\sin^2\left(\frac{\pi}{4}-\frac{x}{2}\right) + \sin x
2\left(\sin\tfrac{\pi}{4}\cos\tfrac{x}{2} - \cos\tfrac{\pi}{4}\sin\tfrac{x}{2}\right)^2 + \sin x

=\;2\left(\tfrac{1}{\sqrt{2}}\cos\tfrac{x}{2} - \tfrac{1}{\sqrt{2}}\sin\tfrac{x}{2}\right)^2 + \sin x

=\;2\bigg[\tfrac{1}{\sqrt{2}}\left(\cos\tfrac{x}{2} - \sin\tfrac{x}{2}\right)\bigg]^2 + \sin x

=\;2(\tfrac{1}{2})\left(\cos^2\tfrac{x}{2} - 2\sin\tfrac{x}{2}\cos\tfrac{x}{2} + \sin^2\tfrac{x}{2}\right) + \sin x

=\;\left(1 - 2\sin\tfrac{x}{2}\cos\tfrac{x}{2}\right) + \sin x

=\;1 - \sin x + \sin x

=\;1
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K