Weekly Math Problem #82: Simplifying Trigonometric Expression

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on simplifying the trigonometric expression $$2 \sin^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)+\sin(x)$$. Participants successfully provided solutions, with notable contributions from members including MarkFL, anemone, Chris L T521, kaliprasad, and soroban. The solution presented by soroban effectively demonstrates the application of trigonometric identities to achieve simplification.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with the sine function and its properties
  • Knowledge of angle subtraction formulas
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the sine double angle identity
  • Learn about angle subtraction formulas in trigonometry
  • Explore advanced trigonometric simplification techniques
  • Practice solving similar trigonometric expressions
USEFUL FOR

Students, educators, and math enthusiasts looking to enhance their understanding of trigonometric simplification techniques and identities.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Simplify $$2 \sin^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)+\sin(x)$$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) Chris L T521
4) kaliprasad
5) soroban

Solution (from soroban):
\text{Simplify: }\:2\sin^2\left(\frac{\pi}{4}-\frac{x}{2}\right) + \sin x
2\left(\sin\tfrac{\pi}{4}\cos\tfrac{x}{2} - \cos\tfrac{\pi}{4}\sin\tfrac{x}{2}\right)^2 + \sin x

=\;2\left(\tfrac{1}{\sqrt{2}}\cos\tfrac{x}{2} - \tfrac{1}{\sqrt{2}}\sin\tfrac{x}{2}\right)^2 + \sin x

=\;2\bigg[\tfrac{1}{\sqrt{2}}\left(\cos\tfrac{x}{2} - \sin\tfrac{x}{2}\right)\bigg]^2 + \sin x

=\;2(\tfrac{1}{2})\left(\cos^2\tfrac{x}{2} - 2\sin\tfrac{x}{2}\cos\tfrac{x}{2} + \sin^2\tfrac{x}{2}\right) + \sin x

=\;\left(1 - 2\sin\tfrac{x}{2}\cos\tfrac{x}{2}\right) + \sin x

=\;1 - \sin x + \sin x

=\;1
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K