MHB Weekly Math Problem #82: Simplifying Trigonometric Expression

  • Thread starter Thread starter Jameson
  • Start date Start date
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Simplify $$2 \sin^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)+\sin(x)$$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) Chris L T521
4) kaliprasad
5) soroban

Solution (from soroban):
\text{Simplify: }\:2\sin^2\left(\frac{\pi}{4}-\frac{x}{2}\right) + \sin x
2\left(\sin\tfrac{\pi}{4}\cos\tfrac{x}{2} - \cos\tfrac{\pi}{4}\sin\tfrac{x}{2}\right)^2 + \sin x

=\;2\left(\tfrac{1}{\sqrt{2}}\cos\tfrac{x}{2} - \tfrac{1}{\sqrt{2}}\sin\tfrac{x}{2}\right)^2 + \sin x

=\;2\bigg[\tfrac{1}{\sqrt{2}}\left(\cos\tfrac{x}{2} - \sin\tfrac{x}{2}\right)\bigg]^2 + \sin x

=\;2(\tfrac{1}{2})\left(\cos^2\tfrac{x}{2} - 2\sin\tfrac{x}{2}\cos\tfrac{x}{2} + \sin^2\tfrac{x}{2}\right) + \sin x

=\;\left(1 - 2\sin\tfrac{x}{2}\cos\tfrac{x}{2}\right) + \sin x

=\;1 - \sin x + \sin x

=\;1
 
Back
Top