Well Orders and Total Orders .... Searcoid Definition 1.3.10 ....

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Definition
Click For Summary
SUMMARY

This discussion centers on the relationship between well-ordered sets and totally ordered sets as defined in Micheal Searcoid's "Elements of Abstract Analysis." Specifically, it addresses the proof that every well-ordered set is also a totally ordered set, as stated in Definition 1.3.10. Participants clarify that for any two distinct elements in a well-ordered set, one must be less than the other, thereby satisfying the criteria for total ordering. The conversation also touches on the implications of singleton sets in this context, confirming that they are vacuously totally ordered.

PREREQUISITES
  • Understanding of well-ordered sets and totally ordered sets
  • Familiarity with mathematical definitions and proofs
  • Basic knowledge of order relations (reflexive, antisymmetric, transitive)
  • Access to Micheal Searcoid's "Elements of Abstract Analysis" for reference
NEXT STEPS
  • Study the implications of Definition 1.3.10 in detail
  • Explore the properties of singleton sets in the context of order relations
  • Learn about the differences between well-ordered and totally ordered sets
  • Review examples of well-ordered sets and their applications in mathematics
USEFUL FOR

Mathematics students, educators, and anyone interested in set theory and order relations will benefit from this discussion, particularly those studying abstract analysis or foundational concepts in mathematics.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Micheal Searcoid's book: "Elements of Abstract Analysis" ... ...

I am currently focused on understanding Chapter 1: Sets ... and in particular Section 1.3 Ordered Sets ...

I need some help in fully understanding some remarks by Searcoid following Definition 1.3.10 ...

Definition 1.3.10 and the remarks following read as follows:
View attachment 8427
View attachment 8428In Searcoid's remarks following Definition 1.3.10 we read the following ...

"... ... every well ordered set is totally ordered ... ... Can someone please help me to prove that every well ordered set is totally ordered ... ...Help will be appreciated ...

Peter

=======================================================================

It may help MHB memebers reading the above post to have access to Definition 1.3.4 ... so I am providing access to the same ... as follows ...
View attachment 8429
Hope that helps ...

Peter
 

Attachments

  • Searcoid - Definition 1.3.10 ... .....png
    Searcoid - Definition 1.3.10 ... .....png
    9 KB · Views: 143
  • Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    Searcoid - 2 - Definition 1.3.10 ... .....PART 2 ... ....png
    9.1 KB · Views: 147
  • Searcoid - Definition 1.3.4 ... ....png
    Searcoid - Definition 1.3.4 ... ....png
    28.5 KB · Views: 134
Physics news on Phys.org
Hi Peter,

You just have to apply the definition to subsets of two elements.

More explicitly, if $S$ is well ordered and $\{x,y\}\subset S$ with $x\ne y$, then $\{x,y\}$ has a smallest element. If that element is $x$, then $x<y$; if that element is $y$, then $y<x$.
 
castor28 said:
Hi Peter,

You just have to apply the definition to subsets of two elements.

More explicitly, if $S$ is well ordered and $\{x,y\}\subset S$ with $x\ne y$, then $\{x,y\}$ has a smallest element. If that element is $x$, then $x<y$; if that element is $y$, then $y<x$.

Sorry to butt in.. But what if $S$ is singleton? They also have a minimum value since no number is greater than itself (...). How do we compare it to a totally ordered set which (seems to) require at least two elements?

edit: i.e. if it doesn't make sense consider a totally ordered set which is singleton, how can we say all well ordered sets are totally ordered? (I'm assuming we can't and that I've missed a definition or am thinking something really silly)..
 
Joppy said:
Sorry to butt in.. But what if $S$ is singleton? They also have a minimum value since no number is greater than itself (...). How do we compare it to a totally ordered set which (seems to) require at least two elements?

edit: i.e. if it doesn't make sense consider a totally ordered set which is singleton, how can we say all well ordered sets are totally ordered? (I'm assuming we can't and that I've missed a definition or am thinking something really silly)..
Hi Joppy,

A singleton set is totally ordered, because the definition is vacuously true.

The definition of a totally ordered set $S$ is equivalent to: if $\{x,y\}\subset S$ and $x\ne y$, then $x<y$ or $y<x$.

If $S$ is a singleton, the condition $x\ne y$ is always false. As the antecedent of the implication is false, the implication itself (the definition) is true.

Note that it is quite common to define an order relation as a reflexive, antisymmetric and transitive relation (like $\le$), and to modify the definitions accordingly. In that case, things are a little simpler.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K