Anchovy
- 99
- 2
I'm trying to find out what all the generators of the SU(5) group explicitly look like but I can't find them anywhere.
I know what the first 12 look like:
<br /> T^{1,2,3} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \sigma^{1,2,3} & \\ 0 & 0 & 0 & & \end{pmatrix},<br /> <br /> T^{4} = \begin{pmatrix} \frac{-1}{3} & 0 & 0 & 0 & 0 \\ 0 & \frac{-1}{3} & 0 & 0 & 0 \\ 0 & 0 & \frac{-1}{3} & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix},<br /> <br /> T^{\alpha = 5,...,12} = \begin{pmatrix} \lambda^{\alpha - 4} & & & 0 & 0 \\ & & & 0 & 0 \\ & & & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}<br />
where \sigma^{1,2,3} are the Pauli matrices of SU(2) and \lambda^{1,2,3,4,5,6,7,8} are the Gell-Mann matrices of SU(3). However, there are another 12 that I can't seem to find anywhere:
<br /> T^{\alpha=13,...,24} = \begin{pmatrix} 0 & 0 & 0 &m ^{13+n} & \\<br /> <br /> 0 & 0 & 0 & & \\<br /> <br /> 0 & 0 & 0 & & \\<br /> <br /> (m^{13+n})^{\dagger} & & & 0 & 0 \\<br /> <br /> & & & 0 & 0 \end{pmatrix} (n = 0, 1, ..., 11)<br />
where m^{13 + n} are 3\times2 matrices. Can anyone show me?
I know what the first 12 look like:
<br /> T^{1,2,3} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \sigma^{1,2,3} & \\ 0 & 0 & 0 & & \end{pmatrix},<br /> <br /> T^{4} = \begin{pmatrix} \frac{-1}{3} & 0 & 0 & 0 & 0 \\ 0 & \frac{-1}{3} & 0 & 0 & 0 \\ 0 & 0 & \frac{-1}{3} & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix},<br /> <br /> T^{\alpha = 5,...,12} = \begin{pmatrix} \lambda^{\alpha - 4} & & & 0 & 0 \\ & & & 0 & 0 \\ & & & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}<br />
where \sigma^{1,2,3} are the Pauli matrices of SU(2) and \lambda^{1,2,3,4,5,6,7,8} are the Gell-Mann matrices of SU(3). However, there are another 12 that I can't seem to find anywhere:
<br /> T^{\alpha=13,...,24} = \begin{pmatrix} 0 & 0 & 0 &m ^{13+n} & \\<br /> <br /> 0 & 0 & 0 & & \\<br /> <br /> 0 & 0 & 0 & & \\<br /> <br /> (m^{13+n})^{\dagger} & & & 0 & 0 \\<br /> <br /> & & & 0 & 0 \end{pmatrix} (n = 0, 1, ..., 11)<br />
where m^{13 + n} are 3\times2 matrices. Can anyone show me?