Three dimensional representation of ##U(1)\times SU(2)##

  • #1
19
0
Consider a three dimensional representation of ##U(1)\times SU(2)## with zero hypercharge ##Y=0##:

$$ L= \begin{pmatrix} L^+ \\ L^0 \\ L^- \end{pmatrix} $$

Then the mass term is given by [1]:

$$ \mathcal{L} \supset -\frac m 2 \left( 2 L^+ L^- +L^0 L^0 \right) $$

I am wondering where the mass term is coming from.

I know that in the Standard Model the mass term for a doublet which is in two dimensional representation, is given by ## m \bar L L##.

Any ideas or comments appreciated.

Reference:

  1. Eqn (4) in arXiv:0710.1668v2 [hep-ph]
 

Answers and Replies

  • #2
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
2021 Award
18,485
8,390
It is just a parameter of the Lagrangian. Since ##L## is a full non-chiral Dirac fermion, there is no problem in introducing that mass term, just as there is no problem in introducing a mass term in QED. The problem in introducing fermion masses in the SM is that the SM is chiral and left- and right-handed fields transform differently under SU(2). In turn, this means that the mass term needs to be generated through something like the Higgs mechanism, but this is not an issue here.
 
  • #3
19
0
Thanks Orodruin . So, in this case mass term should read:

$$ -\frac m 2 \bar L L = -\frac m 2 \left( L^{+†} L^+ + L^{0†} L^0 + L^{-†} L^- \right)$$

So, why should this expression be the same as the expression above in eqn (4) of arXiv:0710.1668v2 [hep-ph] ?
 
  • #5
19
0
##L^+##, ##L^0## and ##L^-## are independent fields. Let's call them ##\psi^+##, ##\phi^0## and ##\chi^-##.
So I am wondering why ##\psi^{+†}=\chi^-## or ##\chi^{-†}=\psi^+## ?
 
  • #6
vanhees71
Science Advisor
Insights Author
Gold Member
2021 Award
20,105
10,841
Then I didn't understand your notation. Which particular model are you discussing?
 
  • #7
19
0
I am adding a triplet to electro-weak sector of the Standard Model. The triplet is in real non-chiral representation of ##SU(2)_L \times U(1)_Y##, and has vanishing hyper charge ##Y=0##.
The model is discussed in details in section 3.1 of this paper.
 

Related Threads on Three dimensional representation of ##U(1)\times SU(2)##

Replies
3
Views
15K
  • Last Post
Replies
0
Views
2K
Replies
1
Views
2K
  • Last Post
Replies
2
Views
2K
Replies
6
Views
5K
Replies
8
Views
4K
Replies
3
Views
1K
  • Last Post
Replies
3
Views
2K
Top