MHB What are the indefinite integrals of cos x and sin x over cos x plus sin x?

  • Thread starter Thread starter MarkFL
  • Start date Start date
AI Thread Summary
The discussion focuses on finding the indefinite integrals of the functions I1 and I2, defined as I1 = ∫(cos x / (cos x + sin x)) dx and I2 = ∫(sin x / (cos x + sin x)) dx. Participants are encouraged to solve these integrals and extend their findings to the integral of sin x over a linear combination of cos x and sin x. The thread acknowledges contributions from members who provided correct solutions, specifically laura123 and kaliprasad. The community emphasizes the importance of following guidelines for problem-solving and engagement. This mathematical exploration highlights the integration of trigonometric functions in calculus.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Hello MHB Community,

anemone couldn't be with us this week, but she conscientiously made provisions for me to post this week's POTW for Secondary School/High School Students in her stead.

So, with no further ado...

The indefinite integrals $I_1$ and $I_2$ are defined by:

$\displaystyle I_1=\int \dfrac{\cos x}{\cos x+\sin x} dx$

and

$\displaystyle I_2=\int \dfrac{\sin x}{\cos x+\sin x} dx$

Determine $I_1$, $I_2$ and hence:

$\displaystyle \int \dfrac{\sin x}{a\cos x+b\sin x} dx$

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi MHB,

Thanks to MarkFL for his help in posting last week's POTW.! :)

Congratulations to the following members for their correct solutions::)

1. laura123
2. kaliprasad

Solution from laura123:
$\begin{aligned}\displaystyle I_1&=\int \dfrac{\cos x}{\cos x+\sin x} dx=\int \dfrac{2\cos x}{2(\cos x+\sin x)} dx=\\
&=\int \dfrac{2\cos x+\sin x-\sin x}{2(\cos x+\sin x)}=\dfrac{1}{2}\int \dfrac{\cos x+\cos x+\sin x-\sin x}{\cos x+\sin x} dx=\\
&=\dfrac{1}{2}\int\dfrac{\cos x+\sin x}{\cos x+\sin x}dx+\dfrac{1}{2}\int\dfrac{\cos x-\sin x}{\cos x+\sin x}dx=\\
&=\dfrac{1}{2}x+\dfrac{1}{2}\log|\cos x+\sin x|+k.
\end{aligned}$

$\begin{aligned}\displaystyle I_2&=\int \dfrac{\sin x}{\cos x+\sin x} dx=\int \dfrac{\sin x+\cos x-\cos x}{\cos x+\sin x} dx=\\
&=\int \left(1-\dfrac{\cos x}{\cos x+\sin x}\right)dx=x-I_1=\\
&=\dfrac{1}{2}x-\dfrac{1}{2}\log|\cos x+\sin x|+k.
\end{aligned}$

$\begin{aligned}\displaystyle \int \dfrac{\sin x}{a\cos x+b\sin x} dx&=\dfrac{1}{a^2+b^2}\int \dfrac{(a^2+b^2)\sin x}{a\cos x+b\sin x} dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a^2\sin x+b^2\sin x+ab\cos x-ab\cos x}{a\cos x+b\sin x} dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a^2\sin x-ab\cos x}{a\cos x+b\sin x} dx+\dfrac{1}{a^2+b^2}\int\dfrac{b^2\sin x+ab\cos x}{a\cos x+b\sin x}dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a(a\sin x-b\cos x)}{a\cos x+b\sin x} dx+\dfrac{1}{a^2+b^2}\int\dfrac{b(b\sin x+a\cos x)}{a\cos x+b\sin x}dx=\\
&=-\dfrac{a}{a^2+b^2}\log|a\cos x+b\sin x|+\dfrac{b}{a^2+b^2}x+k.
\end{aligned}$

Solution from kaliprasad:

$∫ \dfrac{\sin\ x}{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} \cdot \dfrac{2\sin\ x}{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} \cdot \dfrac{(\sin\ x+\cos \ x) +(\sin\ x-\cos \ x) }{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} (1+ \dfrac{\sin\ x-\cos \ x }{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2}dx + ∫\dfrac{1}{2} \dfrac{\sin\ x-\cos \ x }{\sin \ x + \ cos\ x} dx $

= $\dfrac{1}{2}x - \dfrac{1}{2} ln \mid (\sin \ x + \ cos\ x)\mid +c_1$

as $\dfrac{\cos\ x}{\sin \ x + \ cos\ x} $

= $1- \dfrac{\sin\ x}{\sin \ x + \ cos\ x} $

so $∫ \dfrac{\cos \ x}{\sin \ x + \ cos\ x} dx $

= $\dfrac{1}{2}x + \dfrac{1}{2} ln \mid (\sin \ x + \ cos\ x)\mid +c_2$

now we need to inetgrate

$\dfrac{\sin\ x}{a \cos \ x + b\ sin\ x} $

as derivate of $a \cos \ x + b\sin \ x $ is $- a \sin \ x + b\cos \ x $

we can put $\sin\ x= m(a \cos \ x + b\ sin\ x) + n (- a \sin \ x + b\cos \ x) $



comparing coefficients we get 1 = ma + nb and 0=mb-na



solving these 2 we get



$m=\dfrac{b}{b^2+a^2}$ and $n= \dfrac{- a}{b^2+a^2}$



so $\sin\ x=\dfrac{b}{b^2+a^2}(a \cos \ x + b\ sin\ x) - \dfrac{a}{b^2+a^2} (- a \sin \ x + b\cos \ x) $



so $\dfrac{\sin\ x}{a \ cos \ x + b\sin \ x }= \dfrac{b}{b^2+a^2} - \dfrac{a}{b^2+a^2} \dfrac{- a \sin \ x + b\cos \ x} {a \cos \ x + b\sin \ x } $



so integral of above = $ \dfrac{b}{b^2+a^2} x - \dfrac{a}{b^2+a^2} ln \mid a \cos \ x + b\sin \ x \mid +C$

where $C$ is the constant of integration.
 
Back
Top