What are the indefinite integrals of cos x and sin x over cos x plus sin x?

  • Thread starter Thread starter MarkFL
  • Start date Start date
Click For Summary
SUMMARY

The indefinite integrals of the functions $\displaystyle I_1=\int \dfrac{\cos x}{\cos x+\sin x} dx$ and $\displaystyle I_2=\int \dfrac{\sin x}{\cos x+\sin x} dx$ were discussed in the MHB community. The solutions provided by members laura123 and kaliprasad successfully addressed the integrals, demonstrating the application of trigonometric identities and integration techniques. Additionally, the discussion highlighted the integral $\displaystyle \int \dfrac{\sin x}{a\cos x+b\sin x} dx$, which builds upon the previous integrals.

PREREQUISITES
  • Understanding of indefinite integrals
  • Familiarity with trigonometric functions and identities
  • Basic knowledge of integration techniques
  • Ability to manipulate algebraic expressions involving trigonometric functions
NEXT STEPS
  • Study integration techniques for trigonometric functions
  • Explore the use of trigonometric identities in integration
  • Learn about the method of substitution in integrals
  • Investigate advanced integration techniques such as integration by parts
USEFUL FOR

Students in secondary and high school mathematics, educators teaching calculus, and anyone interested in mastering integration of trigonometric functions.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Hello MHB Community,

anemone couldn't be with us this week, but she conscientiously made provisions for me to post this week's POTW for Secondary School/High School Students in her stead.

So, with no further ado...

The indefinite integrals $I_1$ and $I_2$ are defined by:

$\displaystyle I_1=\int \dfrac{\cos x}{\cos x+\sin x} dx$

and

$\displaystyle I_2=\int \dfrac{\sin x}{\cos x+\sin x} dx$

Determine $I_1$, $I_2$ and hence:

$\displaystyle \int \dfrac{\sin x}{a\cos x+b\sin x} dx$

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Hi MHB,

Thanks to MarkFL for his help in posting last week's POTW.! :)

Congratulations to the following members for their correct solutions::)

1. laura123
2. kaliprasad

Solution from laura123:
$\begin{aligned}\displaystyle I_1&=\int \dfrac{\cos x}{\cos x+\sin x} dx=\int \dfrac{2\cos x}{2(\cos x+\sin x)} dx=\\
&=\int \dfrac{2\cos x+\sin x-\sin x}{2(\cos x+\sin x)}=\dfrac{1}{2}\int \dfrac{\cos x+\cos x+\sin x-\sin x}{\cos x+\sin x} dx=\\
&=\dfrac{1}{2}\int\dfrac{\cos x+\sin x}{\cos x+\sin x}dx+\dfrac{1}{2}\int\dfrac{\cos x-\sin x}{\cos x+\sin x}dx=\\
&=\dfrac{1}{2}x+\dfrac{1}{2}\log|\cos x+\sin x|+k.
\end{aligned}$

$\begin{aligned}\displaystyle I_2&=\int \dfrac{\sin x}{\cos x+\sin x} dx=\int \dfrac{\sin x+\cos x-\cos x}{\cos x+\sin x} dx=\\
&=\int \left(1-\dfrac{\cos x}{\cos x+\sin x}\right)dx=x-I_1=\\
&=\dfrac{1}{2}x-\dfrac{1}{2}\log|\cos x+\sin x|+k.
\end{aligned}$

$\begin{aligned}\displaystyle \int \dfrac{\sin x}{a\cos x+b\sin x} dx&=\dfrac{1}{a^2+b^2}\int \dfrac{(a^2+b^2)\sin x}{a\cos x+b\sin x} dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a^2\sin x+b^2\sin x+ab\cos x-ab\cos x}{a\cos x+b\sin x} dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a^2\sin x-ab\cos x}{a\cos x+b\sin x} dx+\dfrac{1}{a^2+b^2}\int\dfrac{b^2\sin x+ab\cos x}{a\cos x+b\sin x}dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a(a\sin x-b\cos x)}{a\cos x+b\sin x} dx+\dfrac{1}{a^2+b^2}\int\dfrac{b(b\sin x+a\cos x)}{a\cos x+b\sin x}dx=\\
&=-\dfrac{a}{a^2+b^2}\log|a\cos x+b\sin x|+\dfrac{b}{a^2+b^2}x+k.
\end{aligned}$

Solution from kaliprasad:

$∫ \dfrac{\sin\ x}{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} \cdot \dfrac{2\sin\ x}{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} \cdot \dfrac{(\sin\ x+\cos \ x) +(\sin\ x-\cos \ x) }{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} (1+ \dfrac{\sin\ x-\cos \ x }{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2}dx + ∫\dfrac{1}{2} \dfrac{\sin\ x-\cos \ x }{\sin \ x + \ cos\ x} dx $

= $\dfrac{1}{2}x - \dfrac{1}{2} ln \mid (\sin \ x + \ cos\ x)\mid +c_1$

as $\dfrac{\cos\ x}{\sin \ x + \ cos\ x} $

= $1- \dfrac{\sin\ x}{\sin \ x + \ cos\ x} $

so $∫ \dfrac{\cos \ x}{\sin \ x + \ cos\ x} dx $

= $\dfrac{1}{2}x + \dfrac{1}{2} ln \mid (\sin \ x + \ cos\ x)\mid +c_2$

now we need to inetgrate

$\dfrac{\sin\ x}{a \cos \ x + b\ sin\ x} $

as derivate of $a \cos \ x + b\sin \ x $ is $- a \sin \ x + b\cos \ x $

we can put $\sin\ x= m(a \cos \ x + b\ sin\ x) + n (- a \sin \ x + b\cos \ x) $



comparing coefficients we get 1 = ma + nb and 0=mb-na



solving these 2 we get



$m=\dfrac{b}{b^2+a^2}$ and $n= \dfrac{- a}{b^2+a^2}$



so $\sin\ x=\dfrac{b}{b^2+a^2}(a \cos \ x + b\ sin\ x) - \dfrac{a}{b^2+a^2} (- a \sin \ x + b\cos \ x) $



so $\dfrac{\sin\ x}{a \ cos \ x + b\sin \ x }= \dfrac{b}{b^2+a^2} - \dfrac{a}{b^2+a^2} \dfrac{- a \sin \ x + b\cos \ x} {a \cos \ x + b\sin \ x } $



so integral of above = $ \dfrac{b}{b^2+a^2} x - \dfrac{a}{b^2+a^2} ln \mid a \cos \ x + b\sin \ x \mid +C$

where $C$ is the constant of integration.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K