High School What Are the Key Divisibility Rules You Need to Know in Mathematics?

  • Thread starter Thread starter Rijad Hadzic
  • Start date Start date
  • Tags Tags
    Divisibility Rules
Click For Summary
SUMMARY

The discussion centers on key divisibility rules in mathematics, specifically the rule that states a number is divisible by 4 if its last two digits are divisible by 4. The proof involves expressing the number as n = 100p + q, where p represents the digits excluding the last two and q represents the last two digits. Participants recommend resources for building a solid mathematical foundation, including "Basic Mathematics" by Lang and "Calculus" by Spivak, emphasizing the importance of understanding mathematical induction for proving divisibility rules.

PREREQUISITES
  • Understanding of basic arithmetic and number representation
  • Familiarity with mathematical induction
  • Knowledge of divisibility rules
  • Basic algebra skills
NEXT STEPS
  • Study mathematical induction techniques
  • Read "Calculus" by Michael Spivak
  • Explore OpenStax mathematics resources for foundational concepts
  • Learn about additional divisibility rules and their proofs
USEFUL FOR

Students seeking to strengthen their mathematical foundation, educators teaching basic mathematics concepts, and anyone interested in understanding divisibility rules and proofs in mathematics.

Rijad Hadzic
Messages
321
Reaction score
20
I've realized that a lot of textbook questions require me to google things because I have no clue how to prove certain things.

For example, I do not have the fact that if the last 2 digits in a number are divisible by 4, that number is then divisible by 4.

I'm pretty sure my teacher will not expect me to have this memorized, and my course definitively doesn't need me to be able to prove it... but I want to be able to.

At what point will be able to do this.. currently I am reading basic mathematics by lang. How many more books would I have to read? Can anyone recommend me a book after langs basic math book? I was thinking of Spivak calculus but idk man. I just find it depressing that I'm not able to prove this right now.
 
Mathematics news on Phys.org
Each of the divisibility rules is fairly easy to prove. Most use mathematical induction (eg the rules for 3 and 9). But the one you mention is even easier.

Let n be the number and let the digits excluding the last two make number p and the last two make number q.
Then we have

n = 100p + q

Now 100 is divisible by 4, so 100p must be as well. So n is divisible by 4 if and only if q - the number made from the last two digits - is divisible by 4.
 
  • Like
Likes Rijad Hadzic
andrewkirk said:
Each of the divisibility rules is fairly easy to prove. Most use mathematical induction (eg the rules for 3 and 9). But the one you mention is even easier.

Let n be the number and let the digits excluding the last two make number p and the last two make number q.
Then we have

n = 100p + q

Now 100 is divisible by 4, so 100p must be as well. So n is divisible by 4 if and only if q - the number made from the last two digits - is divisible by 4.

That really does seem like a simple proof. Do you know what book I should read after basic mathematics? I want a solid foundation in math so that I can be kind of like a "jack of all trades" and learn topics from other fields like computer science, physics, engineering. I'm just now getting through basic mathematics but I hope to be done with the book in about a month...
 
Rijad Hadzic said:
That really does seem like a simple proof. Do you know what book I should read after basic mathematics? I want a solid foundation in math so that I can be kind of like a "jack of all trades" and learn topics from other fields like computer science, physics, engineering. I'm just now getting through basic mathematics but I hope to be done with the book in about a month...
If you want to read those things in a book, then the first row here: https://openstax.org/subjects is a good source. Such things should be included in regular school books, which you normally don't read cover to cover, so reading all of them might be over the top. But at least these books are free, recommendable and you can look beforehand what you want to practice, resp. which chapters are relevant to you.
 
Rijad Hadzic said:
I was thinking of Spivak calculus
That text is my all-time favourite mathematics book. I would strongly recommend it. It's easy to follow and requires very little prior knowledge.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
5K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
8K
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
834
  • · Replies 3 ·
Replies
3
Views
2K