MHB What Are the Two Cases in Calculating Steady States?

  • Thread starter Thread starter mt91
  • Start date Start date
  • Tags Tags
    States Steady
mt91
Messages
13
Reaction score
0
1596731559532.png


I've got this question here, I know to calculate steady states you set dn/dT and dc/dT to 0 and then solve. However can anyone help me understand what it means by the "two cases" and how you go about this?
 
Physics news on Phys.org
Yes, the "steady" in "steady state" means that it does not change. "Steady State" solutions for n and c are constant solutions so the derivatives are 0. The equations become:
$\frac{n}{n+1}- \beta nc=0$ and
$\alpha- \mu c= 0$.

Since the second equation involves only c, no n, I would solve it first:
$c= \frac{\alpha}{\mu}$.

Now put that into the first equation:
$\frac{n}{n+1}- \frac{\alpha \beta}{\mu}n= 0$
$\frac{n}{n+1}= \frac{\alpha \beta}{\mu}n$

$n= \frac{\alpha\beta}{\mu}n(n+ 1)$

Obviously n= 0 is a solution to that so one steady state solution is $c= \frac{\alpha}{\mu}$, $n= 0$.

If n is not 0 we can divide by it to get $1= \frac{\alpha\beta}{\mu}(n+ 1)$.
Then $n+ 1= \frac{\mu}{\alpha\beta}$,
$n= \frac{\mu}{\alpha\beta}- 1= \frac{\mu- \alpha\beta}{\alpha\beta}$.

So if n is not 0 then $c= \frac{\alpha}{\mu}$, $n= \frac{\mu}{\alpha\beta}- 1$ is a steady state solution.

But notice the "$\frac{\mu}{\alpha\beta}- 1$". If $\frac{\mu}{\alpha\beta}= 1$ then we are back to the "n= 0" solution, above. If $\frac{\mu}{\alpha\beta}> 1$ the steady state solution for n is positive, if $\frac{\mu}{\alpha\beta}< 1$ the steady state solution for n is negative.

Was this the entire question or was there some application in which n being positive or negative would be important?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top