MHB What Does P(X ∈ dx) Mean in Probability Notation?

  • Thread starter Thread starter gnob
  • Start date Start date
  • Tags Tags
    Dx Notation
AI Thread Summary
The notation P(X ∈ dx) is considered poor because it lacks clarity regarding the variable x. A more appropriate expression is P(X = x)dx, which accurately represents the probability density function for a continuous random variable. This notation indicates the probability that X falls within a very small interval around x. To calculate probabilities over a range, one typically integrates the probability density function, such as P(a ≤ X < b) = ∫_a^b P(X=x)dx. For further understanding, resources that combine probability with calculus are recommended.
gnob
Messages
11
Reaction score
0
Good day!
I was trying to make sense of the notation $P(X \in dx),$ where $X$ is a continuous random variable. Some also write this one as $P(X \in [x, x+dx])$ to represent the probability that the random variable $X$ takes on values in the interval $[x, x+dx].$

I have seen similar notation a lot in my readings such as the ff:
$$
P(Z_v \in dy) = \frac{1}{\Gamma(v)}e^{-y}y^{v-1} dy \quad\quad \text{and}\quad\quad
P\left( \int_0^{\tau} e^{\sigma B_s - p\sigma^2 s/2} ds \in du,\,\, B_{\tau} \in dy\right).
$$

Please help me understand these notations, or better yet please suggest me a (reference) book that rigorously explains these notations?
Thanks in advance.
 
Physics news on Phys.org
gnob said:
Good day!
I was trying to make sense of the notation $P(X \in dx),$ where $X$ is a continuous random variable. Some also write this one as $P(X \in [x, x+dx])$ to represent the probability that the random variable $X$ takes on values in the interval $[x, x+dx].$

I have seen similar notation a lot in my readings such as the ff:
$$
P(Z_v \in dy) = \frac{1}{\Gamma(v)}e^{-y}y^{v-1} dy \quad\quad \text{and}\quad\quad
P\left( \int_0^{\tau} e^{\sigma B_s - p\sigma^2 s/2} ds \in du,\,\, B_{\tau} \in dy\right).
$$

Please help me understand these notations, or better yet please suggest me a (reference) book that rigorously explains these notations?
Thanks in advance.

Welcome to MHB, gnob! :)

As far as I'm concerned $P(X \in dx)$ is bad notation.
According to your explanation it refers to an $x$, but that $x$ is not part of the notation, which is bad.

A more usual notation is $P(X = x)dx$ which is the same as $P(x \le X < x + dx)$.
We're talking about a probability density here, which is the probability that an event occurs in a (very) small interval.
Usually, you'd use a probability density to define a probability between 2 boundaries.
Like:
$$P(a \le X < b) = \int_a^b P(X=x)dx$$
 
I like Serena said:
Welcome to MHB, gnob! :)

As far as I'm concerned $P(X \in dx)$ is bad notation.
According to your explanation it refers to an $x$, but that $x$ is not part of the notation, which is bad.

A more usual notation is $P(X = x)dx$ which is the same as $P(x \le X < x + dx)$.
We're talking about a probability density here, which is the probability that an event occurs in a (very) small interval.
Usually, you'd use a probability density to define a probability between 2 boundaries.
Like:
$$P(a \le X < b) = \int_a^b P(X=x)dx$$

Thanks for your time and reply. Its really of great help.
Though I want to ask if you know of some books, that discusses the above topic.
Thanks a lot.
 
gnob said:
Thanks for your time and reply. Its really of great help.
Though I want to ask if you know of some books, that discusses the above topic.
Thanks a lot.

Hmm, books?
Well, I guess that would be any book where probability is explained in combination with calculus.
Sorry, but I don't have any book in particular in mind.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top