Find P(X+Y>1/2) for given joint density function

  • #1
Peter_Newman
141
10
Hey everybody, :smile:

I have a joint density of the random variables ##X## and ##Y## given and want to find out ##P(X+Y>1/2)##.

The joint density is as follows:

$$f_{XY}(x,y) = \begin{cases}\frac{1}{y}, &0<x<y,0<y<1 \\ 0, &else \end{cases}$$

To get a view of this I created a plot:

Areas2.PNG


As usual I would split the area up into two sub areas (see red dots) and doube integrate this. In this case for instance my calculation is the following:

$$P(X+Y>1/2) = P(Y>1/2 - X) = \int_{y=0.5}^{1} \int_{x=0}^{y} \frac{1}{y} \, dx dy + \int_{0.25}^{0.5} \int_{x=0.5-y}^{y} \frac{1}{y} \, dx dy \approx 0.5 + 0.1534 \approx 0.6534$$

The solution should be ##P(X+Y>1/2) = \frac{\ln(2)}{2}##, which I can not explain, that why I'am asking here. I think in my integral there could be a mistake, but I don't see the error...

I would be very happy for answers to this! Thank you! :smile:
 

Answers and Replies

  • #2
andrewkirk
Science Advisor
Homework Helper
Insights Author
Gold Member
4,066
1,645
That looks correct, as far as you've gone.
I suggest you write out the remainder of the steps you took to reach your numeric answer, doing first the inner and then the outer integrals and finally inserting the outer integration limits to obtain a closed formula for the result.
Advisors will then be able to spot any errors in your working.
 
  • #3
Peter_Newman
141
10
Hello, thank you for the answer.

I will gladly comply with the request and show here my exact calculation path for the double integral:

$$\int_{y=0.5}^{1} \int_{x=0}^{y} \frac{1}{y} \, dx dy + \int_{0.25}^{0.5} \int_{x=0.5-y}^{y} \frac{1}{y} \, dx dy$$

$$= \int_{0.5}^{1} \left(\int_{0}^{y} \frac{1}{y} \, dx\right) \, dy + \int_{0.25}^{0.5} \left(\int_{x=0.5-y}^{y} \frac{1}{y} \, dx \right) \, dy $$

$$= \int_{0.5}^{1} \left( 1\right) \, dy + \int_{0.25}^{0.5} \left(2-\frac{0.5}{y} \right) \, dy $$
$$= 0.5 + 0.153426$$

But this equals not the "original solution" ##P(X+Y>1/2) = \frac{\ln(2)}{2}##...
 
Last edited:
  • #4
andrewkirk
Science Advisor
Homework Helper
Insights Author
Gold Member
4,066
1,645
I get 1 - log(2)/2, which is approx 0.653. So my calc agrees with yours. Maybe the book has the wrong answer. It happens.
 
Last edited:
  • #5
Peter_Newman
141
10
Hello,

thank you for your reply and confirmation of the calculation. And my integral limits are not set wrong?

I think that assuming there is an error in the book, it comes from the fact that the authors have calculated ##P(X+Y<1/2)##, which would be the small triangle that arises when you draw the diagonal to 0. This would be, so to speak, the "white triangle" from the diagonal to the colored area (0 to 0.5 on y-axis and 0.25 x-axis (but integral limits are different here...)...
 

Suggested for: Find P(X+Y>1/2) for given joint density function

Replies
4
Views
642
Replies
4
Views
545
Replies
3
Views
759
Replies
2
Views
574
Replies
1
Views
497
Replies
4
Views
720
Replies
4
Views
620
  • Last Post
Replies
22
Views
460
Top