What does the algorithm calculate?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Algorithm
Click For Summary
SUMMARY

The algorithm calculates the value of \( \frac{(2n)!}{n!(n+1)!} \) through a series of nested loops. The outer loop iterates from 0 to \( n \), while the inner loop computes the factorial of \( 2i \). The variables \( x \), \( y \), and \( z \) represent \( i! \), \( (i+1)! \), and \( (2i)! \) respectively. The final result, stored in variable \( c \), is derived by dividing \( z \) by the product of \( x \) and \( y \).

PREREQUISITES
  • Understanding of factorial notation and properties
  • Familiarity with loop invariants in algorithm analysis
  • Basic knowledge of programming constructs such as while-loops
  • Mathematical concepts related to combinatorics
NEXT STEPS
  • Study the concept of loop invariants in depth
  • Learn about combinatorial algorithms and their applications
  • Explore advanced factorial calculations and their optimizations
  • Investigate the implications of Stirling's approximation on factorial growth
USEFUL FOR

Mathematicians, computer scientists, and software developers interested in algorithm design, particularly those focusing on combinatorial algorithms and factorial computations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the following

Code:
i <- 0 
    j <- 0 
    x <- 1 
    y <- 1 
    z <- 1 
    c <- 1 
    u <- 1 
    while i<n do 
       i <- i+1 
       j <- i 
       x <- x*i 
       z <- x 
       y <- i+1 
       y <- x*y 
       while j<2*i do 
          j <- j+1 
          z <- z*j 
       od 
       c <- z div (x*y) 
    od

I want to find the loop invariant for both while-loops.


I applied the algorithm some times to understand what it does:

The inner while loop calculates the following: $$z=z\prod_{m=1}^{2i-1}(i+m)=x\prod_{m=1}^{2i-1}(i+m)$$ or not? Is this also the loop invariant of the inner while loop?

So I got the following results:

First loop:

Code:
    i=1 
    j=i=1 
    x=1 
    z=x=1 
    y=i+1=2 
    y=x*y=2 
    inner while loop: z=x(i+1)=2 
    c = z div (x*y) = 2 div 2 = 1
Second loop:

Code:
    i=2 
    j=i=2 
    x=1*2=2 
    z=x=2 
    y=i+1=3 
    y=x*y=2*3=6 
    inner while loop: z=x(i+1)(i+2)(i+3)=2*3*4*5 
    c = z div (x*y) = 2*3*4*5/2*6=10
Third loop:

Code:
    i=3 
    j=i=3 
    x=2*3=6 
    z=x=6
    y=i+1=4 
    y=x*y=24 
    inner while loop: z=x(i+1)(i+2)(i+3)(i+4)(i+5)=6*4*5*6*7*8 
    c = z div (x*y) = 6*4*5*6*7*8/6*24=5*7*8=280
Is everything correct? But what exactly calculates the algorithm? What is a general formula of the results? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

A proof of correctness works like this:
Code:
    i <- 0 
    j <- 0 
    x <- 1 
    y <- 1 
    z <- 1 
    c <- 1 
    u <- 1 
                          // i<=n, j=2*i, x=i!, y=(i+1)!, z=(2*i)!, c = (2*i)! div (i! * (i+1)!)
    while i<n do 
                          // i<n, j=2*i, x=i!, y=(i+1)!, z=(2*i)!
       i <- i+1 
                          // i<=n, j=2*(i-1), x=(i-1)!, y=i!, z=(2*(i-1))!
       j <- i 
       x <- x*i 
                          // i<=n, j=i, x=i!, y=i!, z=(2*(i-1))!
       z <- x 
                          // i<=n, j=i, x=i!, y=i!, z=i!
       y <- i+1 
                          // i<=n, j=i, x=i!, y=i+1, z=i!
       y <- x*y 
                          // i<=n, j=i, x=i!, y=(i+1)!, z=i!
       while j<2*i do 
                          // j<2*i, z=j!
          j <- j+1 
                          // j<=2*i, z=(j-1)!
          z <- z*j
                          // j<=2*i, z=j!
       od 
                          // i<=n, j=2*i, x=i!, y=(i+1)!, z=(2*i)!
       c <- z div (x*y) 
                          // i<=n, j=2*i, x=i!, y=(i+1)!, z=(2*i)!, c = (2*i)! div (i! * (i+1)!)
    od
    // i=n, j=2*n, x=n!, y=(n+1)!, z=(2*n)!, c = (2*n)! div (n! * (n+1)!)
So the algorithm calculates $ (2n)! \operatorname{div} (n! (n+1)!)$. (Thinking)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K