MHB What is the classification of this degenerate quadratic surface?

  • Thread starter Thread starter Jamie2
  • Start date Start date
  • Tags Tags
    Quadratic Surface
Jamie2
Messages
17
Reaction score
0
The question is to classify/describe the following degenerate quadratic surface:

x2 - 2xy +2y2 - 2yz + z2 = 0
 
Physics news on Phys.org
Jamie said:
The question is to classify/describe the following degenerate quadratic surface:

x2 - 2xy +2y2 - 2yz + z2 = 0
Write it as (x^2- 2xy+ y^2)+ (y^2- 2yz+ z^2)= 0

Does that give you any ideas?
 
HallsofIvy said:
Write it as (x^2- 2xy+ y^2)+ (y^2- 2yz+ z^2)= 0

Does that give you any ideas?
well that's the same as (x-y)2 + (y-z)2 = 0
but I don't know how to use that to help me describe the quadratic surface
 
Jamie said:
well that's the same as (x-y)2 + (y-z)2 = 0
but I don't know how to use that to help me describe the quadratic surface

Hi Jamie! Welcome to MHB! :)

Did you know that a square is always at least zero?
Suppose the sum of 2 squares is equal to zero, what does that say about those squares?
 
I like Serena said:
Hi Jamie! Welcome to MHB! :)

Did you know that a square is always at least zero?
Suppose the sum of 2 squares is equal to zero, what does that say about those squares?

That they are equal to each other?
Or that (x-y)2 = -(y-z)2
 
Jamie said:
That they are equal to each other?
Or that (x-y)2 = -(y-z)2

That they are both zero!
If either of them would be not zero, the sum would be positive, and therefore not equal to 0.
 
I like Serena said:
That they are both zero!
If either of them would be not zero, the sum would be positive, and therefore not equal to 0.

right, I knew that too. But what does that mean for the equation's 3-dimensional surface?
 
Jamie said:
right, I knew that too. But what does that mean for the equation's 3-dimensional surface?

It means that $x=y$ and $y=z$.
Both are equations of planes.
The degenerated quadratic surface is where they intersect.
Where do they intersect?
 
I like Serena said:
It means that $x=y$ and $y=z$.
Both are equations of planes.
The degenerated quadratic surface is where they intersect.
Where do they intersect?

on the y axis? is the degenerate surface just a line?
 
  • #10
Jamie said:
on the y axis? is the degenerate surface just a line?

Indeed, the degenerate surface is just a line... but it is not the y axis...
Try to find a point that is on the line...
 
  • #11
Jamie said:
That they are equal to each other?
Or that (x-y)2 = -(y-z)2
Both! The only way a sum of squares can be 0 is if each is 0. x- y= 0 and y- z= 0 which is the same as the z= y= x. That is the line through (0, 0, 0) and (1, 1, 1).
 
Back
Top