What is the differential equation satisfied by the Bessel function of order 1?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The Bessel function of order 1, denoted as \(J_1(x)\), satisfies the differential equation \(x^2J_1^{\prime\prime}(x)+xJ_1^{\prime}(x)+(x^2-1)J_1(x) = 0\). Additionally, it is established that the derivative of the Bessel function of order 0, \(J_0^{\prime}(x)\), equals \(-J_1(x)\). These relationships are critical for understanding the properties and applications of Bessel functions in mathematical physics.

PREREQUISITES
  • Understanding of differential equations
  • Familiarity with Bessel functions and their definitions
  • Knowledge of series expansions and summation techniques
  • Basic calculus, particularly differentiation and integration
NEXT STEPS
  • Study the properties of Bessel functions of higher orders, such as \(J_2(x)\) and \(J_n(x)\)
  • Explore applications of Bessel functions in solving physical problems, particularly in wave equations
  • Learn about the derivation and significance of the Bessel differential equation
  • Investigate numerical methods for approximating Bessel functions
USEFUL FOR

Mathematicians, physicists, and engineers who require a deeper understanding of Bessel functions and their applications in various fields, including wave propagation and signal processing.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW. I'll just say it's no fun unless more people participate!

I'm going to keep the POTWs at this level of difficulty for a couple more weeks, hoping to get more people to bite!

-----

Problem: The Bessel function of order 1 is defined by

\[J_1(x) = \sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\]

(a) Show that $J_1(x)$ satisfies the differential equation

\[x^2J_1^{\prime\prime}(x)+xJ_1^{\prime}(x)+(x^2-1)J_1(x) = 0\]

(b) Show that $J_0^{\prime}(x) = -J_1(x)$, where

\[J_0(x) = \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(n!)^22^{2n}}\]

-----
 
Physics news on Phys.org
This week's problem was answered correctly by Sudharaka. Here's his solution.

a) \begin{eqnarray}x^2J_1^{\prime\prime}(x)+xJ_1^{ \prime}(x)+(x^2-1)J_1(x) &=&x^2\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)(2n) x^{2n-1}}{n!(n+1)!2^{2n+1}}+x\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)x^{2n}}{n!(n+1)!2^{2n+1}}+(x^2-1)\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)(2n) x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n(2n+1)x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}-\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^n 4n(n+1) x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=1}^{\infty}\frac{(-1)^n x^{2n+1}}{(n-1)!n!2^{2n-1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^{n+1} x^{2n+3}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&0\end{eqnarray}\[\therefore x^2J_1^{\prime\prime}(x)+xJ_1^{\prime}(x)+(x^2-1)J_1(x) = 0\]b)\begin{eqnarray}J_0^{\prime}(x)&=&\sum_{n=0}^{\infty}\frac{(-1)^n(2n)x^{2n-1}}{(n!)^22^{2n}}\\&=&\sum_{n=1}^{\infty}\frac{(-1)^n x^{2n-1}}{(n-1)!n!2^{2n-1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^{n+1}x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&

-\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&

-J_{1}(x)\end{eqnarray}\[\therefore J_0^{\prime}(x)=-J_{1}(x)\]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
519
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K