MHB What is the differential equation satisfied by the Bessel function of order 1?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on the Bessel function of order 1, defined by a specific infinite series. Participants are tasked with demonstrating that this function satisfies a particular differential equation involving its derivatives. Additionally, they must show the relationship between the derivatives of the Bessel functions of orders 0 and 1. The problem aims to engage more participants in the ongoing series of problems of the week (POTW). Sudharaka successfully provided a correct solution to this week's challenge.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW. I'll just say it's no fun unless more people participate!

I'm going to keep the POTWs at this level of difficulty for a couple more weeks, hoping to get more people to bite!

-----

Problem: The Bessel function of order 1 is defined by

\[J_1(x) = \sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\]

(a) Show that $J_1(x)$ satisfies the differential equation

\[x^2J_1^{\prime\prime}(x)+xJ_1^{\prime}(x)+(x^2-1)J_1(x) = 0\]

(b) Show that $J_0^{\prime}(x) = -J_1(x)$, where

\[J_0(x) = \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(n!)^22^{2n}}\]

-----
 
Physics news on Phys.org
This week's problem was answered correctly by Sudharaka. Here's his solution.

a) \begin{eqnarray}x^2J_1^{\prime\prime}(x)+xJ_1^{ \prime}(x)+(x^2-1)J_1(x) &=&x^2\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)(2n) x^{2n-1}}{n!(n+1)!2^{2n+1}}+x\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)x^{2n}}{n!(n+1)!2^{2n+1}}+(x^2-1)\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)(2n) x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n(2n+1)x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}-\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^n 4n(n+1) x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=1}^{\infty}\frac{(-1)^n x^{2n+1}}{(n-1)!n!2^{2n-1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^{n+1} x^{2n+3}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&0\end{eqnarray}\[\therefore x^2J_1^{\prime\prime}(x)+xJ_1^{\prime}(x)+(x^2-1)J_1(x) = 0\]b)\begin{eqnarray}J_0^{\prime}(x)&=&\sum_{n=0}^{\infty}\frac{(-1)^n(2n)x^{2n-1}}{(n!)^22^{2n}}\\&=&\sum_{n=1}^{\infty}\frac{(-1)^n x^{2n-1}}{(n-1)!n!2^{2n-1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^{n+1}x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&

-\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&

-J_{1}(x)\end{eqnarray}\[\therefore J_0^{\prime}(x)=-J_{1}(x)\]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
235
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K