MHB What is the differential equation satisfied by the Bessel function of order 1?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW. I'll just say it's no fun unless more people participate!

I'm going to keep the POTWs at this level of difficulty for a couple more weeks, hoping to get more people to bite!

-----

Problem: The Bessel function of order 1 is defined by

\[J_1(x) = \sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\]

(a) Show that $J_1(x)$ satisfies the differential equation

\[x^2J_1^{\prime\prime}(x)+xJ_1^{\prime}(x)+(x^2-1)J_1(x) = 0\]

(b) Show that $J_0^{\prime}(x) = -J_1(x)$, where

\[J_0(x) = \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(n!)^22^{2n}}\]

-----
 
Physics news on Phys.org
This week's problem was answered correctly by Sudharaka. Here's his solution.

a) \begin{eqnarray}x^2J_1^{\prime\prime}(x)+xJ_1^{ \prime}(x)+(x^2-1)J_1(x) &=&x^2\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)(2n) x^{2n-1}}{n!(n+1)!2^{2n+1}}+x\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)x^{2n}}{n!(n+1)!2^{2n+1}}+(x^2-1)\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)(2n) x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n(2n+1)x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}-\sum_{n=0}^{\infty}\frac{(-1)^n x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^n 4n(n+1) x^{2n+1}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=1}^{\infty}\frac{(-1)^n x^{2n+1}}{(n-1)!n!2^{2n-1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^{n+1} x^{2n+3}}{n!(n+1)!2^{2n+1}}+\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n!(n+1)!2^{2n+1}}\\&=&0\end{eqnarray}\[\therefore x^2J_1^{\prime\prime}(x)+xJ_1^{\prime}(x)+(x^2-1)J_1(x) = 0\]b)\begin{eqnarray}J_0^{\prime}(x)&=&\sum_{n=0}^{\infty}\frac{(-1)^n(2n)x^{2n-1}}{(n!)^22^{2n}}\\&=&\sum_{n=1}^{\infty}\frac{(-1)^n x^{2n-1}}{(n-1)!n!2^{2n-1}}\\&=&\sum_{n=0}^{\infty}\frac{(-1)^{n+1}x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&

-\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{n!(n+1)!2^{2n+1}}\\&=&

-J_{1}(x)\end{eqnarray}\[\therefore J_0^{\prime}(x)=-J_{1}(x)\]
 
Back
Top