What is the Domain of the Area Function for a Rectangle on a Parabola?

Click For Summary
SUMMARY

The domain of the area function for a rectangle inscribed under the parabola defined by the equation y = 2x² is [0, ∞). The area function A(x) is expressed as A(x) = 4x³, derived from the rectangle's dimensions where length l = 2x and width w = 2x². The area can increase indefinitely as x increases, confirming that while the area function does not have a maximum, it can yield an area of zero when x equals zero. The rectangle's vertex in quadrant I necessitates that x must be greater than or equal to zero.

PREREQUISITES
  • Understanding of quadratic functions, specifically y = 2x².
  • Familiarity with area calculations for geometric shapes, particularly rectangles.
  • Knowledge of function notation and how to derive functions from geometric properties.
  • Basic calculus concepts, including limits and the behavior of polynomial functions.
NEXT STEPS
  • Explore the properties of polynomial functions, focusing on cubic functions like A(x) = 4x³.
  • Study the implications of domain and range in relation to geometric shapes and their area functions.
  • Learn about optimization techniques in calculus to find maximum and minimum values of functions.
  • Investigate the relationship between geometric shapes and their equations, particularly in coordinate geometry.
USEFUL FOR

Students studying calculus, geometry enthusiasts, and educators looking to understand the relationship between algebraic functions and geometric interpretations.

caters
Messages
229
Reaction score
10

Homework Statement


A rectangle has one vertex in quadrant I at the point (x,y) which lies on the graph of y = 2x^2 and another vertex at the point (-x, y) in the second quadrant and the other vertices on the x-axis at (-x, 0) and (x, 0)

What is the domain of the area function?

y = 2x^2 = w

l = 2x

Vertices:

(-x, 0)
(x,0)
(-x,y)
(x,y)

Homework Equations


2x(2x^2) = 4x^3

2x = 2x^2

The Attempt at a Solution



Find the zeros:

0

Find the maximum area:

1

[0,1] is the domain

But I am not so sure about this. On the one hand a rectangle can't have infinite area. On the other hand, 4x^3, the area function goes all the way to infinity.

So am I approaching this wrong? How do I find the maximum area if the function has no max? I know that x cannot be any lower than 0 since that would mean negative area and negative area only applies in integral calculus.
 
Last edited:
Physics news on Phys.org
caters said:

Homework Statement


What is the domain of the area function?

y = 2x^2 = w

l = 2x

Vertices:
(-x, 0)
(x,0)
(-x,y)
(x,y)

Homework Equations


2x(2x^2) = 4x^3

2x = 2x^2

The Attempt at a Solution


Find the zeros:

0
Find the maximum area:
1

[0,1] is the domain

But I am not so sure about this. On the one hand a rectangle can't have infinite area. On the other hand, 4x^3, the area function goes all the way to infinity.

So am I approaching this wrong? How do I find the maximum area if the function has no max? I know that x cannot be any lower than 0 since that would mean negative area and negative area only applies in integral calculus.
Please give the complete problem statement.
 
I just edited my post to include the whole problem statement.
 
You should have something that looks like a function definition in function notation. Since it represents Area, you might chose A for the function name.

What is the definition (a formula) for A ?

A(x) = _?_
 
A(x) = 4x^3

In fact that first equation up there in the second part shows how I got this. 2x is the length and y is the width. Since y = 2x^2, A(x) = 2x(2x^2) = 4x^3
 
Last edited:
caters said:
A(x) = 4x^3

In fact that first equation up there in the second part shows how I got this. 2x is the length and y is the width. Since y = 2x^2, A(x) = 2x(2x^2) = 4x^3
Yes, and you had some other expressions as well .

Now it's clear that you have the correct function for area.

Saying that the range of this function goes to infinity, does NOT say that the area can be infinite, It simply means that that area can be made to be as large as desired.
 
caters said:

Homework Statement


A rectangle has one vertex in quadrant I at the point (x,y) which lies on the graph of y = 2x^2 and another vertex at the point (-x, y) in the second quadrant and the other vertices on the x-axis at (-x, 0) and (x, 0)

What is the domain of the area function?

y = 2x^2 = w

l = 2x

Vertices:

(-x, 0)
(x,0)
(-x,y)
(x,y)

Homework Equations


2x(2x^2) = 4x^3

2x = 2x^2

The Attempt at a Solution



Find the zeros:

0

Find the maximum area:

1

[0,1] is the domain

But I am not so sure about this. On the one hand a rectangle can't have infinite area. On the other hand, 4x^3, the area function goes all the way to infinity.

So am I approaching this wrong? How do I find the maximum area if the function has no max? I know that x cannot be any lower than 0 since that would mean negative area and negative area only applies in integral calculus.
You have confused "range" with "domain". The range is the set of area values; the domain is the set of ##x##-values. So, the question is asking about the allowed ##x##-values, not about the values of area.

Don't worry about the lack of a maximal area. Some functions (on some domains) do not have maxima; this is one of them.

Of course you cannot have an infinite area, but you can have area greater than 10 million or greater than 100 quadrillion or greater than ... . You see? There is no upper limit beyond which the area cannot go. No matter how large a number you name you can have an area larger than that number.
 
Last edited:
So the domain is [0, ∞)?
 
caters said:
So the domain is [0, ∞)?
Can you have x = 0 ?
 
  • #10
Yes. If x = 0, then the rectangle will simply be a point at the origin. Plus, 0 is a valid number for the function.
 
  • #11
caters said:
Yes. If x = 0, then the rectangle will simply be a point at the origin. Plus, 0 is a valid number for the function.
Then it's not a rectangle.

The point (0,0) is not in Quadrant I .
 
  • #12
But I can have the area function equal 0 and be valid. And the origin is in all quadrants. As x increases, -x decreases by the same amount and y increases by 2x^2 so it traces the parabola as the rectangle gets bigger and bigger. As a result, its area increases by 4x^3.

I don't see how that changes this:

[0, ∞)

to this:

(0, ∞)
 
  • #13
caters said:
But I can have the area function equal 0 and be valid. And the origin is in all quadrants. As x increases, -x decreases by the same amount and y increases by 2x^2 so it traces the parabola as the rectangle gets bigger and bigger. As a result, its area increases by 4x^3.

I don't see how that changes this:

[0, ∞)

to this:

(0, ∞)
The problem statement says what regarding the location of the vertex at (x, y) ?

Sure the function, f(x) = 4x3 be zero or for that matter it can return a negative, but those are inconsistent with the problem statement as regards A(x) ..
 
  • #14
It just shows that as one of the vertices along with (-x, y), (-x, 0), and (x, 0). It doesn't say anything other than that (x, y) is a vertex as far as the point (x, y) is concerned. The only other thing it shows besides a graph, which I can't put here, is that y = 2x^2 and it asks me these 4 things:

1) What is the area as a function of x?

2) What is the domain of the area function?

3) What is the perimeter as a function of x?

and

4) What is the maximum area?

Everything but the domain, I am confident that I got right.
 
  • #15
caters said:
A rectangle has one vertex in quadrant I at the point (x,y) ...

That clearly states that the point (x, y) is in Quadrant I, the first quadrant. That means that x > 0 and y > 0. Neither is equal to zero.
 
  • #16
caters said:

Homework Statement


A rectangle has one vertex in quadrant I at the point (x,y) which lies on the graph of y = 2x^2 and another vertex at the point (-x, y) in the second quadrant and the other vertices on the x-axis at (-x, 0) and (x, 0)

What is the domain of the area function?

y = 2x^2 = w

l = 2x

Vertices:

(-x, 0)
(x,0)
(-x,y)
(x,y)

Homework Equations


2x(2x^2) = 4x^3

2x = 2x^2

The Attempt at a Solution



Find the zeros:

0

Find the maximum area:

1

[0,1] is the domain

But I am not so sure about this. On the one hand a rectangle can't have infinite area. On the other hand, 4x^3, the area function goes all the way to infinity.

So am I approaching this wrong? How do I find the maximum area if the function has no max? I know that x cannot be any lower than 0 since that would mean negative area and negative area only applies in integral calculus.

If ##x < 0## the length of the side from ##(-x,0)## to ##(x,0)## is ##2|x|##, so whether ##x## is positive or negative, the area is always positive, because ##A = 2 |x| x^2##. The formula ##2 x^3## applies when ##x \geq 0## only. You don't believe it? Well, if ##x = +5## the two ends of the base are at (-5.0) and (5,0), so the distance between them is 10. When ##x = -5## the two ends are at (-5,0) and (5,0) again, so the distance between them is still 10.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K