What Is the Expected Value of Y Squared for a Transformed Uniform Variable?

  • Context: MHB 
  • Thread starter Thread starter Francobati
  • Start date Start date
  • Tags Tags
    Distributed
Click For Summary
SUMMARY

The expected value of \( Y^2 \) for the transformed uniform variable \( Y = 1 - X^2 \) where \( X \sim U(0,1) \) is calculated to be \( E(Y^2) = \frac{8}{15} \). The incorrect options presented were \( E(Y^2) = 2 \) and \( E(Y^2) = \frac{1}{2} \). The variance of \( Y \) is derived as \( var(Y) = -var(X^2) \), with \( var(X) = \frac{1}{12} \). The calculations for \( E(X^2) \) and \( E(X^4) \) utilize the definitions of expected value and variance, confirming \( E(X^2) = \frac{1}{3} \).

PREREQUISITES
  • Understanding of expected value and variance in probability theory
  • Familiarity with uniform distributions, specifically \( U(0,1) \)
  • Knowledge of integration techniques for calculating expected values
  • Ability to manipulate algebraic expressions involving random variables
NEXT STEPS
  • Study the properties of uniform distributions and their transformations
  • Learn about the calculation of expected values for non-linear transformations
  • Explore variance calculations for transformed random variables
  • Review integration techniques for probability density functions
USEFUL FOR

Mathematicians, statisticians, and students studying probability theory, particularly those focusing on transformations of random variables and their expected values.

Francobati
Messages
20
Reaction score
0
Hello.
Let $ Y=1-X^2 $, where $ X~ U(0,1) $. What statement is TRUE?
-$ E(Y^2)=2 $
- $ E(Y^2)=1/2 $
- $ var(Y)=1/12 $
- $ E(Y)=E(Y^2) $
-None of the remaining statements.
Solution:
I compute: $ E(Y^2)=E(1-X^2)^2=E(1+X^4-2X^2)=1+E(X^4)-2E(X^2) $, then?
 
Physics news on Phys.org
Francobati said:
Hello.
Let $ Y=1-X^2 $, where $ X~ U(0,1) $. What statement is TRUE?
-$ E(Y^2)=2 $
- $ E(Y^2)=1/2 $
- $ var(Y)=1/12 $
- $ E(Y)=E(Y^2) $
-None of the remaining statements.
Solution:
I compute: $ E(Y^2)=E(1-X^2)^2=E(1+X^4-2X^2)=1+E(X^4)-2E(X^2) $, then?

Apply the definition of expected value.
That is:
$$EZ = \int z f_Z(z) \, dz$$
So with $X\sim U(0,1)$:
$$E(X^2) = \int_0^1 x^2 \cdot 1 \, dx$$
 
$ E(X^2)=\frac{1^3-0^3}{3*1} $
$ E(X^4)=\frac{1^5}{5}$
$ E(Y^2)=1+\frac{1}{5}-2*\frac{1}{3}=1+\frac{1}{5}-\frac{2}{3}=\frac{15+3-10}{15}= \frac{8}{15}\ne2\ne\frac{1}{2} $, so first and second are false.
$ var(Y)=var(1-X^2)=var(1)-var(X^2)=0-var(X^2) $
$ var(X)=\frac{(b-a)^2}{12}=\frac{(1-0)^2}{12}=\frac{1}{12} $
But what formula I must appky in $E(X^2)$ and in $E(X^4)$ to obtain these values?
 
I take it you mean $var(X^2)$?

To find it, apply the definition of variance:
$$var(Z) = E\big((Z-EZ)^2\big) = E\big(Z^2\big) - (EZ)^2$$
 
Yes and I obtain $E(X^2)=var(X)+(E(X))^2=\frac{(b-a)^2}{12}+(\frac{a+b}{2})^2=\frac{1}{12}+(\frac{1}{2})^2=\frac{1}{12}+\frac{1}{4}=\frac{1}{3}$
This result equal to this $E(X^2)=\frac{1^3-0^3}{3(1)}= \frac{1}{3}$, how I can translate this $E(X^2)=\frac{1^3-0^3}{3(1)}$ in a general formula?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K