MHB What Is the Expected Value of Y Squared for a Transformed Uniform Variable?

  • Thread starter Thread starter Francobati
  • Start date Start date
  • Tags Tags
    Distributed
Francobati
Messages
20
Reaction score
0
Hello.
Let $ Y=1-X^2 $, where $ X~ U(0,1) $. What statement is TRUE?
-$ E(Y^2)=2 $
- $ E(Y^2)=1/2 $
- $ var(Y)=1/12 $
- $ E(Y)=E(Y^2) $
-None of the remaining statements.
Solution:
I compute: $ E(Y^2)=E(1-X^2)^2=E(1+X^4-2X^2)=1+E(X^4)-2E(X^2) $, then?
 
Physics news on Phys.org
Francobati said:
Hello.
Let $ Y=1-X^2 $, where $ X~ U(0,1) $. What statement is TRUE?
-$ E(Y^2)=2 $
- $ E(Y^2)=1/2 $
- $ var(Y)=1/12 $
- $ E(Y)=E(Y^2) $
-None of the remaining statements.
Solution:
I compute: $ E(Y^2)=E(1-X^2)^2=E(1+X^4-2X^2)=1+E(X^4)-2E(X^2) $, then?

Apply the definition of expected value.
That is:
$$EZ = \int z f_Z(z) \, dz$$
So with $X\sim U(0,1)$:
$$E(X^2) = \int_0^1 x^2 \cdot 1 \, dx$$
 
$ E(X^2)=\frac{1^3-0^3}{3*1} $
$ E(X^4)=\frac{1^5}{5}$
$ E(Y^2)=1+\frac{1}{5}-2*\frac{1}{3}=1+\frac{1}{5}-\frac{2}{3}=\frac{15+3-10}{15}= \frac{8}{15}\ne2\ne\frac{1}{2} $, so first and second are false.
$ var(Y)=var(1-X^2)=var(1)-var(X^2)=0-var(X^2) $
$ var(X)=\frac{(b-a)^2}{12}=\frac{(1-0)^2}{12}=\frac{1}{12} $
But waht formula I must appky in $E(X^2)$ and in $E(X^4)$ to obtain these values?
 
I take it you mean $var(X^2)$?

To find it, apply the definition of variance:
$$var(Z) = E\big((Z-EZ)^2\big) = E\big(Z^2\big) - (EZ)^2$$
 
Yes and I obtain $E(X^2)=var(X)+(E(X))^2=\frac{(b-a)^2}{12}+(\frac{a+b}{2})^2=\frac{1}{12}+(\frac{1}{2})^2=\frac{1}{12}+\frac{1}{4}=\frac{1}{3}$
This result equal to this $E(X^2)=\frac{1^3-0^3}{3(1)}= \frac{1}{3}$, how I can translate this $E(X^2)=\frac{1^3-0^3}{3(1)}$ in a general formula?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top