MHB What is the formula for the volume of a solid unit n-sphere in n+1 dimensions?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion focuses on deriving the formula for the volume of a solid unit n-sphere in n+1 dimensions. Despite the prompt, no participants provided answers to the problem. The original poster shared their own solution following the guidelines for the Problem of the Week. The lack of engagement highlights a potential need for clearer instructions or more encouragement for participation. Overall, the thread emphasizes the challenge of solving higher-dimensional geometry problems.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Derive a formula for the volume of the solid unit $n$-sphere in $\Bbb R^{n+1}$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Let $D^n$ denote the solid $n$-sphere in $\Bbb R^{n+1}$. By slicing, $$\operatorname{Vol}(D^n) = \int_{-1}^1 \left(\sqrt{1-x_{n+1}^2}\right)^{n-1}\operatorname{Vol}(D^{n-1})\, dx_{n+1} = \int_{-1}^1 (1 - x_{n+1}^2)^{\frac{n-1}{2}}\, dx_{n+1}\operatorname{Vol}(D^{n-1}) = \operatorname{Vol}(D^{n-1}) \cdot 2\int_0^{\frac{\pi}{2}} \cos^n\theta\, d\theta$$ The integral $2\int_0^{\pi/2} \cos^n\theta\, d\theta$ is the Beta function $B((n+1)/2, 1/2)$, thus $$2\int_0^{\frac{\pi}{2}}\cos^n\theta\, d\theta = \frac{\Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} = \frac{\Gamma\left(\frac{n+1}{2}\right)\sqrt{\pi}}{\Gamma\left(\frac{n+2}{2}\right)}$$ Hence $$\operatorname{Vol}(D^n) = \operatorname{Vol}(D^0)\prod_{j = 1}^n \frac{\Gamma\left(\frac{j+1}{2}\right)\sqrt{\pi}}{\Gamma\left(\frac{j+2}{2}\right)} = (\sqrt{\pi})^n \prod_{j = 1}^n \frac{\Gamma\left(\frac{j+1}{2}\right)}{\Gamma\left(\frac{j+2}{2}\right)} = \pi^{n/2} \frac{\Gamma(1)}{\Gamma\left(\frac{n+2}{2}\right)} = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)}$$