MHB What is the general term for integer sequences satisfying a specific condition?

  • Thread starter Thread starter hxthanh
  • Start date Start date
  • Tags Tags
    Integer Sequences
Click For Summary
SUMMARY

The integer sequence defined by the recurrence relation $a_n = a_{n-1} + \left\lfloor \dfrac{n^2 - 2n + 2 - a_{n-1}}{n} \right\rfloor$ for $n = 1, 2, \ldots$ has a general term given by $a_n = 1 + \left\lfloor \dfrac{(n-1)^2}{3} \right\rfloor$. The proof utilizes mathematical induction, establishing that for $n = 3k + 1$, $a_{3k+1} = 3k^2 + 1$, and similar results hold for $a_{3k+2}$ and $a_{3k+3}$. Additional formulations such as $a_n = 1 + \left\lceil \dfrac{n(n-2)}{3} \right\rceil$ are also discussed.

PREREQUISITES
  • Understanding of integer sequences and recurrence relations.
  • Familiarity with the floor function and its properties.
  • Basic knowledge of mathematical induction.
  • Ability to manipulate algebraic expressions involving sequences.
NEXT STEPS
  • Study the properties of the floor function in depth.
  • Learn advanced techniques in mathematical induction.
  • Explore other types of integer sequences and their general terms.
  • Investigate the implications of recurrence relations in combinatorial mathematics.
USEFUL FOR

Mathematicians, educators, and students interested in number theory, particularly those studying integer sequences and recurrence relations.

hxthanh
Messages
15
Reaction score
0
Define $\{a_n\}$ is integer sequences (all term are integers) satisfy condition

$a_n=a_{n-1}+\left\lfloor\dfrac{n^2-2n+2-a_{n-1}}{n}\right\rfloor $ for $n=1,2,...$

*note: $\left\lfloor x\right\rfloor$ is a greatest integer number less than or equal $x$
Find general term of sequences.
 
Mathematics news on Phys.org
hxthanh said:
Define $\{a_n\}$ is integer sequences (all term are integers) satisfy condition

$a_n=a_{n-1}+\left\lfloor\dfrac{n^2-2n+2-a_{n-1}}{n}\right\rfloor $ for $n=1,2,...$

*note: $\left\lfloor x\right\rfloor$ is a greatest integer number less than or equal $x$
Find general term of sequences.

is there an initial term ? a_0
 
Amer said:
is there an initial term ? a_0

$a_0$ is'nt importan!
because $a_1=a_0+\left\lfloor\dfrac{1^2-2.1+2-a_0}{1}\right\rfloor=1$
 
hxthanh said:
Define $\{a_n\}$ is integer sequences (all term are integers) satisfy condition

$a_n=a_{n-1}+\left\lfloor\dfrac{n^2-2n+2-a_{n-1}}{n}\right\rfloor $ for $n=1,2,...$

*note: $\left\lfloor x\right\rfloor$ is a greatest integer number less than or equal $x$
Find general term of sequences.
[sp]$a_n = 1 + \left\lfloor\dfrac{(n-1)^2}3\right\rfloor.$ To prove that, use induction, but by establishing three steps at a time rather than the usual one step.

Before starting the proof, notice that $a_n = \left\lfloor\dfrac{n^2-2n+2-a_{n-1} + na_{n-1}}{n}\right\rfloor = \left\lfloor\dfrac{(n-1)(a_{n-1} + n-1) +1}{n}\right\rfloor$. Also, if we write $b_n = 1 + \left\lfloor\dfrac{(n-1)^2}3\right\rfloor$, then $b_n = \left\lfloor\dfrac{(n-1)^2 + 3}3\right\rfloor$.

The inductive hypothesis is that if $n=3k+1$ then $a_{3k+1} = b_{3k+1} = 3k^2+1$, and that furthermore this is still true if the floor signs are omitted. In other words, if $n=3k+1$ then the fractions in the expressions for $a_n$ and $b_n$ are integers, so there is no need to take their fractional parts. This is true for $k=0$.

That hypothesis implies that $$a_{n+1} = a_{3k+2} = \left\lfloor\dfrac{(3k+1)(3k^2+3k+2) +1}{3k+2}\right\rfloor = \left\lfloor\dfrac{9k^3 + 12k^2+9k+3}{3k+2}\right\rfloor = \left\lfloor 3k^2 + 2k + 1 + \tfrac{2k +1}{3k+2}\right\rfloor = 3k^2 + 2k + 1.$$ Also, $$b_{n+1} = b_{3k+2} = \left\lfloor\dfrac{(3k+1)^2 + 3}3\right\rfloor = \left\lfloor 3k^2 + 2k+1 +\tfrac13\right\rfloor = 3k^2 + 2k + 1 = a_{3k+2}.$$

This in turn implies that $$a_{n+2} = a_{3k+3} = \left\lfloor\dfrac{(3k+2)(3k^2+5k+3) +1}{3k+3}\right\rfloor = \left\lfloor\dfrac{9k^3 + 21k^2+19k+7}{3k+3}\right\rfloor = \left\lfloor 3k^2 + 4k + 2 + \tfrac{k +1}{3k+3}\right\rfloor = 3k^2 + 4k + 2.$$ Also, $$b_{n+2} = b_{3k+3} = \left\lfloor\dfrac{(3k+2)^2 + 3}3\right\rfloor = \left\lfloor 3k^2 + 4k+2 +\tfrac13\right\rfloor = 3k^2 + 4k + 2 = a_{3k+3}.$$
This in turn implies that $$a_{n+3} = a_{3k+4} = \left\lfloor\dfrac{(3k+3)(3k^2+7k+5) +1}{3k+4}\right\rfloor = \left\lfloor\dfrac{9k^3 + 30k^2+36k+16}{3k+4}\right\rfloor = 3k^2 + 66k + 4.$$ Also, $$b_{n+3} = b_{3k+4} = \left\lfloor\dfrac{(3k+3)^2 + 3}3\right\rfloor = 3k^2 + 6k + 4 = a_{3k+4}.$$ Notice that the fractions for $a_{n+3}$ and $b_{n+3}$ both had zero remainder on division, and therefore gave integer results without having to take the integer part. Notice also that $3k^2 + 6k + 4 = 3(k+1)^2 + 1$, which completes the inductive step.[/sp]
 
Opalg said:
$a_n = 1 + \left\lfloor\dfrac{(n-1)^2}3\right\rfloor.$
...
very nice solution!

Some similar results
[sp]
$a_n=1+\left\lceil\dfrac{n(n-2)}{3}\right\rceil$

$a_n=1+(2n-2)\left\lfloor\dfrac{n}{3}\right\rfloor-3\left\lfloor\dfrac{n}{3}\right\rfloor^2$

Also, by induction show that $a_n-a_{n-1}=\left\lfloor\dfrac{2(n-1)}{3}\right\rfloor$
[/sp]
 

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
815
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K