MHB What is the general term for integer sequences satisfying a specific condition?

  • Thread starter Thread starter hxthanh
  • Start date Start date
  • Tags Tags
    Integer Sequences
Click For Summary
The discussion focuses on defining integer sequences $\{a_n\}$ that satisfy the recurrence relation $a_n = a_{n-1} + \left\lfloor \frac{n^2 - 2n + 2 - a_{n-1}}{n} \right\rfloor$. It is established that the general term can be expressed as $a_n = 1 + \left\lfloor \frac{(n-1)^2}{3} \right\rfloor$, with a proof involving induction. The discussion also highlights alternative formulations of the sequence, including $a_n = 1 + \left\lceil \frac{n(n-2)}{3} \right\rceil$ and $a_n = 1 + (2n-2) \left\lfloor \frac{n}{3} \right\rfloor - 3 \left\lfloor \frac{n}{3} \right\rfloor^2$. Additionally, it is noted that the difference between consecutive terms can be expressed as $a_n - a_{n-1} = \left\lfloor \frac{2(n-1)}{3} \right\rfloor$. The thread concludes with a consensus on the validity of the derived expressions for the sequence.
hxthanh
Messages
15
Reaction score
0
Define $\{a_n\}$ is integer sequences (all term are integers) satisfy condition

$a_n=a_{n-1}+\left\lfloor\dfrac{n^2-2n+2-a_{n-1}}{n}\right\rfloor $ for $n=1,2,...$

*note: $\left\lfloor x\right\rfloor$ is a greatest integer number less than or equal $x$
Find general term of sequences.
 
Mathematics news on Phys.org
hxthanh said:
Define $\{a_n\}$ is integer sequences (all term are integers) satisfy condition

$a_n=a_{n-1}+\left\lfloor\dfrac{n^2-2n+2-a_{n-1}}{n}\right\rfloor $ for $n=1,2,...$

*note: $\left\lfloor x\right\rfloor$ is a greatest integer number less than or equal $x$
Find general term of sequences.

is there an initial term ? a_0
 
Amer said:
is there an initial term ? a_0

$a_0$ is'nt importan!
because $a_1=a_0+\left\lfloor\dfrac{1^2-2.1+2-a_0}{1}\right\rfloor=1$
 
hxthanh said:
Define $\{a_n\}$ is integer sequences (all term are integers) satisfy condition

$a_n=a_{n-1}+\left\lfloor\dfrac{n^2-2n+2-a_{n-1}}{n}\right\rfloor $ for $n=1,2,...$

*note: $\left\lfloor x\right\rfloor$ is a greatest integer number less than or equal $x$
Find general term of sequences.
[sp]$a_n = 1 + \left\lfloor\dfrac{(n-1)^2}3\right\rfloor.$ To prove that, use induction, but by establishing three steps at a time rather than the usual one step.

Before starting the proof, notice that $a_n = \left\lfloor\dfrac{n^2-2n+2-a_{n-1} + na_{n-1}}{n}\right\rfloor = \left\lfloor\dfrac{(n-1)(a_{n-1} + n-1) +1}{n}\right\rfloor$. Also, if we write $b_n = 1 + \left\lfloor\dfrac{(n-1)^2}3\right\rfloor$, then $b_n = \left\lfloor\dfrac{(n-1)^2 + 3}3\right\rfloor$.

The inductive hypothesis is that if $n=3k+1$ then $a_{3k+1} = b_{3k+1} = 3k^2+1$, and that furthermore this is still true if the floor signs are omitted. In other words, if $n=3k+1$ then the fractions in the expressions for $a_n$ and $b_n$ are integers, so there is no need to take their fractional parts. This is true for $k=0$.

That hypothesis implies that $$a_{n+1} = a_{3k+2} = \left\lfloor\dfrac{(3k+1)(3k^2+3k+2) +1}{3k+2}\right\rfloor = \left\lfloor\dfrac{9k^3 + 12k^2+9k+3}{3k+2}\right\rfloor = \left\lfloor 3k^2 + 2k + 1 + \tfrac{2k +1}{3k+2}\right\rfloor = 3k^2 + 2k + 1.$$ Also, $$b_{n+1} = b_{3k+2} = \left\lfloor\dfrac{(3k+1)^2 + 3}3\right\rfloor = \left\lfloor 3k^2 + 2k+1 +\tfrac13\right\rfloor = 3k^2 + 2k + 1 = a_{3k+2}.$$

This in turn implies that $$a_{n+2} = a_{3k+3} = \left\lfloor\dfrac{(3k+2)(3k^2+5k+3) +1}{3k+3}\right\rfloor = \left\lfloor\dfrac{9k^3 + 21k^2+19k+7}{3k+3}\right\rfloor = \left\lfloor 3k^2 + 4k + 2 + \tfrac{k +1}{3k+3}\right\rfloor = 3k^2 + 4k + 2.$$ Also, $$b_{n+2} = b_{3k+3} = \left\lfloor\dfrac{(3k+2)^2 + 3}3\right\rfloor = \left\lfloor 3k^2 + 4k+2 +\tfrac13\right\rfloor = 3k^2 + 4k + 2 = a_{3k+3}.$$
This in turn implies that $$a_{n+3} = a_{3k+4} = \left\lfloor\dfrac{(3k+3)(3k^2+7k+5) +1}{3k+4}\right\rfloor = \left\lfloor\dfrac{9k^3 + 30k^2+36k+16}{3k+4}\right\rfloor = 3k^2 + 66k + 4.$$ Also, $$b_{n+3} = b_{3k+4} = \left\lfloor\dfrac{(3k+3)^2 + 3}3\right\rfloor = 3k^2 + 6k + 4 = a_{3k+4}.$$ Notice that the fractions for $a_{n+3}$ and $b_{n+3}$ both had zero remainder on division, and therefore gave integer results without having to take the integer part. Notice also that $3k^2 + 6k + 4 = 3(k+1)^2 + 1$, which completes the inductive step.[/sp]
 
Opalg said:
$a_n = 1 + \left\lfloor\dfrac{(n-1)^2}3\right\rfloor.$
...
very nice solution!

Some similar results
[sp]
$a_n=1+\left\lceil\dfrac{n(n-2)}{3}\right\rceil$

$a_n=1+(2n-2)\left\lfloor\dfrac{n}{3}\right\rfloor-3\left\lfloor\dfrac{n}{3}\right\rfloor^2$

Also, by induction show that $a_n-a_{n-1}=\left\lfloor\dfrac{2(n-1)}{3}\right\rfloor$
[/sp]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
654
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K