A What is the generator of the cyclic group (Z,+)?

  • A
  • Thread starter Thread starter LagrangeEuler
  • Start date Start date
  • Tags Tags
    Cyclic Group
LagrangeEuler
Messages
711
Reaction score
22
I do not understand why ##(Z.+)## is the cyclic group? What is a generator of ##(Z,+)##?
If I take ##<1>## I will get all positive integers. If I take ##<-1>## I will get all negative integers. I should have one element which generates the whole group. What element is this?
 
Physics news on Phys.org
LagrangeEuler said:
I do not understand why ##(Z.+)## is the cyclic group? What is a generator of ##(Z,+)##?
If I take ##<1>## I will get all positive integers. If I take ##<-1>## I will get all negative integers. I should have one element which generates the whole group. What element is this?
The positive integers do not form a subgroup, so they cannot be the subgroup generated by the element ##1##. Something is wrong with the definitions you are using.
 
If ##(G, \cdot)## is a group and ##g\in G##, the cyclic subgroup generated by ##g## is ##\langle g\rangle = \{g^n : n\in \mathbb{Z}\}##, where ##g^0 = e##, ##g^n= g\cdot g\cdots g## (##n## times) if ##n## is a positive integer and ##g^n = g^{-1}\cdot g^{-1}\cdots g^{-1}## (##-n## times) is ##n## is a negative integer.

If ##G## is additive, ##ng## is written in place of ##g^n##. So when ##G## is additive ##\langle g\rangle = \{ng : n\in \mathbb{Z}\}##. In the case ##G = \mathbb{Z}##, the cyclic subgroup ##\langle 1\rangle = \{n\cdot 1 : n\in \mathbb{Z}\} = \{n : n\in \mathbb{Z}\} = \mathbb{Z}##. Similarly ##\langle -1\rangle = \mathbb{Z}##. So indeed, ##\mathbb{Z}## is cyclic, and both ##-1## and ##1## are generators of the group.
 
  • Like
Likes topsquark and SammyS
Euge said:
If ##G## is abelian,
I think you mean additive.
 
  • Like
Likes topsquark and SammyS
PeroK said:
I think you mean additive.
Corrected, thanks!
 
Can I add, as a non-mathematician….

If a finite group is cyclic, the group can be generated by a single element.

But if an infinite group (such as integers under addition) is cyclic, the group can be generated by a single element or its inverse. So in the present case we can use 1 or -1.
 
  • Like
Likes nuuskur, topsquark and SammyS
Steve4Physics said:
Can I add, as a non-mathematician….

If a finite group is cyclic, the group can be generated by a single element.

But if an infinite group (such as integers under addition) is cyclic, the group can be generated by a single element or its inverse. So in the present case we can use 1 or -1.
A group element has the same order as its inverse, so for any group ##G## and ##g\in G##, the cyclic subgroup ##\langle g\rangle = \langle g^{-1}\rangle##.
 
  • Like
Likes Greg Bernhardt, topsquark and PeroK
A fun exercise is proving in an infinite cyclic group that ##g## and ##-g## are the only generators, which is not true for finite groups - e.g. the cyclic group of order ##p## for ##p## prime has every element as a generator except for the identity.
 
  • Like
Likes topsquark and Euge
Back
Top