MHB What is the Greatest Integer When Evaluating a Complex Fraction?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\left\lfloor{\frac{2014^3}{(2015)(2016)}+\frac{2016^3}{2014(2015)}}\right\rfloor$$.
 
Mathematics news on Phys.org
anemone said:
Evaluate $$\left\lfloor{\frac{2014^3}{(2015)(2016)}+\frac{2016^3}{2014(2015)}}\right\rfloor$$.

let x = 2015
so we get
$\left\lfloor\frac{(x-1)^3}{x(x+1)} + \frac{(x+1)^3}{(x-1)x}\right\rfloor$
$=\left\lfloor\frac{(x-1)^4+ (x+1)^4}{x(x+1)(x-1)}\right\rfloor$
$=\left\lfloor\frac{2(x^4+6x^2+ 2)}{x(x+1)(x-1)}\right\rfloor$
$=\left\lfloor\frac{2((x^2-1)(x^2+7)+9)}{x(x^2-1)}\right\rfloor$
$=\left\lfloor(\frac{2(x^2+7)}{x}+ \frac{18}{x(x^2-1)})\right\rfloor$
$=\left\lfloor(2x + \frac{14}{x} + \frac{18}{x(x^2-1)})\right\rfloor$
now as x = 2015 and so $\frac{14}{x} < \frac{1}{2}$ and $\frac{18}{x(x^2-1)} < \frac{1}{2}$ so
ans is 2x or 4030
 
Thanks for participating, kaliprasad! Just so you know that my approach is exactly the same as yours. (Smile)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top