MHB What is the highest 3 digit prime factor of ${2000 \choose 1000}$?

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Prime
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find the highest 3 digit prime factor of ${2000 \choose 1000}$
 
Mathematics news on Phys.org
kaliprasad said:
find the highest 3 digit prime factor of ${2000 \choose 1000}$

${2000 \choose 1000} = \frac{2000!}{1000!1000!}$
so the prime p occurs $ \lfloor \frac{2000}{p} \rfloor - 2\lfloor \frac{1000}{p} \rfloor $ times
now if p is 3 digit $> \frac{2000}{3}$ or $>666$ then
$ \lfloor \frac{2000}{p} \rfloor = 2 $
$ \lfloor \frac{1000}{p} \rfloor = 1 $
so $ \lfloor \frac{2000}{p} \rfloor - 2\lfloor \frac{1000}{p} \rfloor =0 $
if is $< 666$ and $> 500$
$ \lfloor \frac{2000}{p} \rfloor - 2\lfloor \frac{1000}{p} \rfloor >= 1 $
so largest p is largest prime $< 666$ and it is 661.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
3
Views
1K
Replies
3
Views
914
Replies
12
Views
5K
Replies
7
Views
1K
Replies
7
Views
2K
Back
Top