MHB What is the highest 3 digit prime factor of ${2000 \choose 1000}$?

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Prime
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find the highest 3 digit prime factor of ${2000 \choose 1000}$
 
Mathematics news on Phys.org
kaliprasad said:
find the highest 3 digit prime factor of ${2000 \choose 1000}$

${2000 \choose 1000} = \frac{2000!}{1000!1000!}$
so the prime p occurs $ \lfloor \frac{2000}{p} \rfloor - 2\lfloor \frac{1000}{p} \rfloor $ times
now if p is 3 digit $> \frac{2000}{3}$ or $>666$ then
$ \lfloor \frac{2000}{p} \rfloor = 2 $
$ \lfloor \frac{1000}{p} \rfloor = 1 $
so $ \lfloor \frac{2000}{p} \rfloor - 2\lfloor \frac{1000}{p} \rfloor =0 $
if is $< 666$ and $> 500$
$ \lfloor \frac{2000}{p} \rfloor - 2\lfloor \frac{1000}{p} \rfloor >= 1 $
so largest p is largest prime $< 666$ and it is 661.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
940
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K