MHB What is the Integral of a Function Around a Rectangle Oriented Clockwise?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Pole Rectangle
Dustinsfl
Messages
2,217
Reaction score
5
Find the integral
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \int_C\frac{dz}{\left(z - \frac{3}{2}-i\frac{\sqrt{11}}{2}\right)\left(z-\frac{3}{2}+i\frac{\sqrt{11}}{2}\right)}
$$

Where the path is a rectangle oriented clockwise from (0,0) to (0,4) to (10,4) to (10,0) to (0,0).

So $z_1 = \frac{3}{2} + i \frac{ \sqrt{11} }{2}$ and $ z_2 = \frac{3}{2} - i \frac{ \sqrt{11} }{2}$

The $\int_C\frac{dz}{f(z)}=-2\pi i\text{Res}_{z_0}$

So the residue is
$$
\frac{1}{z_1-z_2} = \frac{1}{-i\sqrt{11}}
$$
Then
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \frac{-2\pi i}{-i\sqrt{11}} =\frac{2\pi}{\sqrt{11}}
$$

Correct?
 
Physics news on Phys.org
dwsmith said:
Find the integral
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \int_C\frac{dz}{\left(z - \frac{3}{2}-i\frac{\sqrt{11}}{2}\right)\left(z-\frac{3}{2}+i\frac{\sqrt{11}}{2}\right)}
$$

Where the path is a rectangle oriented clockwise from (0,0) to (0,4) to (10,4) to (10,0) to (0,0).

So $z_1 = \frac{3}{2} + i \frac{ \sqrt{11} }{2}$ and $ z_2 = \frac{3}{2} - i \frac{ \sqrt{11} }{2}$

The $\int_C\frac{dz}{f(z)}=-2\pi i\text{Res}_{z_0}$

So the residue is
$$
\frac{1}{z_1-z_2} = \frac{1}{-i\sqrt{11}}
$$
Then
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \frac{-2\pi i}{-i\sqrt{11}} =\frac{2\pi}{\sqrt{11}}
$$

Correct?

This is correct.
 

Similar threads

Replies
2
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
29
Views
3K
Back
Top