What is the Integral of a Function Around a Rectangle Oriented Clockwise?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Pole Rectangle
Click For Summary
SUMMARY

The integral of the function around a rectangle oriented clockwise is calculated as follows: $$ \int_C\frac{dz}{z^2 - 3z + 5} = \frac{2\pi}{\sqrt{11}}. $$ This result is derived using the residue theorem, where the residues at the poles $z_1 = \frac{3}{2} + i \frac{\sqrt{11}}{2}$ and $z_2 = \frac{3}{2} - i \frac{\sqrt{11}}{2}$ are evaluated. The integral is confirmed to be correct based on the calculations presented.

PREREQUISITES
  • Complex analysis fundamentals
  • Understanding of contour integration
  • Residue theorem application
  • Knowledge of poles and residues in complex functions
NEXT STEPS
  • Study the residue theorem in detail
  • Learn about contour integration techniques
  • Explore complex function singularities and their classifications
  • Practice evaluating integrals using different contour paths
USEFUL FOR

Mathematicians, physics students, and anyone studying complex analysis who seeks to deepen their understanding of contour integrals and the residue theorem.

Dustinsfl
Messages
2,217
Reaction score
5
Find the integral
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \int_C\frac{dz}{\left(z - \frac{3}{2}-i\frac{\sqrt{11}}{2}\right)\left(z-\frac{3}{2}+i\frac{\sqrt{11}}{2}\right)}
$$

Where the path is a rectangle oriented clockwise from (0,0) to (0,4) to (10,4) to (10,0) to (0,0).

So $z_1 = \frac{3}{2} + i \frac{ \sqrt{11} }{2}$ and $ z_2 = \frac{3}{2} - i \frac{ \sqrt{11} }{2}$

The $\int_C\frac{dz}{f(z)}=-2\pi i\text{Res}_{z_0}$

So the residue is
$$
\frac{1}{z_1-z_2} = \frac{1}{-i\sqrt{11}}
$$
Then
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \frac{-2\pi i}{-i\sqrt{11}} =\frac{2\pi}{\sqrt{11}}
$$

Correct?
 
Physics news on Phys.org
dwsmith said:
Find the integral
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \int_C\frac{dz}{\left(z - \frac{3}{2}-i\frac{\sqrt{11}}{2}\right)\left(z-\frac{3}{2}+i\frac{\sqrt{11}}{2}\right)}
$$

Where the path is a rectangle oriented clockwise from (0,0) to (0,4) to (10,4) to (10,0) to (0,0).

So $z_1 = \frac{3}{2} + i \frac{ \sqrt{11} }{2}$ and $ z_2 = \frac{3}{2} - i \frac{ \sqrt{11} }{2}$

The $\int_C\frac{dz}{f(z)}=-2\pi i\text{Res}_{z_0}$

So the residue is
$$
\frac{1}{z_1-z_2} = \frac{1}{-i\sqrt{11}}
$$
Then
$$
\int_C\frac{dz}{z^2 - 3z + 5} = \frac{-2\pi i}{-i\sqrt{11}} =\frac{2\pi}{\sqrt{11}}
$$

Correct?

This is correct.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K