What is the Interesting Euler Sum Proven by this Equation?

Click For Summary
SUMMARY

The discussion centers on the proof of the Euler sum represented by the equation $$\sum_{k\geq 1}\left(1+\frac{1}{3}+\cdots +\frac{1}{2k-1} \right) \frac{x^{2k}}{k}=\frac{1}{4}\ln^2\left( \frac{1+x}{1-x}\right)$$. Participants clarify the relationship between harmonic numbers, specifically $$H_{2k}$$ and $$H_{k}$$, and correct misunderstandings regarding their equivalence. The final conclusion emphasizes the correct evaluation of harmonic sums in the context of the Euler sum.

PREREQUISITES
  • Understanding of harmonic numbers, specifically $$H_{k}$$ and $$H_{2k}$$
  • Familiarity with series and summation techniques in calculus
  • Knowledge of logarithmic identities and properties
  • Basic proficiency in mathematical notation and manipulation
NEXT STEPS
  • Study the properties of harmonic numbers in depth
  • Explore advanced series convergence techniques
  • Learn about the applications of logarithmic functions in mathematical proofs
  • Investigate the relationship between harmonic sums and Euler's work
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in number theory and series convergence will benefit from this discussion.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following Euler sum

$$\sum_{k\geq 1}\left(1+\frac{1}{3}+\cdots +\frac{1}{2k-1} \right) \frac{x^{2k}}{k}=\frac{1}{4}\ln^2\left( \frac{1+x}{1-x}\right)$$​
 
Last edited:
Physics news on Phys.org
I get that

$$\sum_{k=1}^{\infty} H_{2k-1} \frac{x^{2k}}{k} = \frac{1}{2} \Big( \ln^{2}(1-x) + \ln^{2}(1+x) \Big)$$
The generating function for the harmonic numbers is $ \displaystyle -\frac{\ln(1-x)}{1-x} $.

So

$$ \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = - \frac{\ln(1+x)}{1+x}$$

And

$$ \sum_{k=1}^{\infty} H_{k} x^{k} - \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = 2 \sum_{k=1}^{\infty} H_{2k-1} x^{2k-1} = -\frac{\ln(1-x)}{1-x} + \frac{\ln(1+x)}{1+x}$$

Now integrate.

$$

\sum_{k=1}^{\infty} H_{2k-1} \frac{x^{2k}}{k} = - \int \frac{\ln(1-x)}{1-x} \ dx + \int \frac{\ln(1+x)}{1+x} \ dx $$

$$ = \frac{1}{2} \Big( \ln^{2}(1-x) + \ln^{2}(1+x) \Big) + C$$

And when $x$ is zero, $ \displaystyle \frac{1}{2} \Big( \ln^{2}(1-x) + \ln^{2}(1+x) \Big) =0$. So $C = 0 $.
 
I think you should consider the harmonic numbers

$$H_{2k}+ H'_{2k}$$ , that's way you got a different answer .
 
Last edited:
But our answers aren't equivalent.
 
Last edited:
$$1+\frac{1}{3}+\frac{1}{5}+\cdots +\frac{1}{2k-1}= \left(1+\frac{1}{2}+\frac{1}{3} +\cdots +\frac{1}{2k-1}+\frac{1}{2k}\right)-\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{k} \right)=H_{2k} -\frac{1}{2}H_k$$

- - - Updated - - -

I think you are evaluating $$H_{2k-1}\neq 1+\frac{1}{3}+\frac{1}{5}+\cdots +\frac{1}{2k-1}$$
 
Yeah. My mistake. Sorry.
 
Redo (Smile)
$ \displaystyle \sum_{k =1}^{\infty} \left(1+\frac{1}{3}+\cdots +\frac{1}{2k-1} \right) \frac{x^{2k}}{k} = \sum_{k=1}^{\infty} \left( H_{2k} - \frac{1}{2} H_{k} \right) \frac{x^{2k}}{k} $$\displaystyle \sum_{k=1}^{\infty} H_{k} x^{k} + \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = 2 \sum_{k=1}^{\infty} H_{2k} x^{2k} = - \frac{\ln(1-x)}{1-x} - \frac{\ln(1+x)}{1+x}$$\displaystyle \sum_{k=1}^{\infty} H_{2k} \frac{x^{2k}}{k} = - \frac{1}{2} \int \frac{\ln(1-x)}{x(1-x)} \ dx - \frac{1}{2} \int \frac{\ln(1+x)}{x(1+x)} \ dx $

$ \displaystyle = \text{Li}_{2} (x) + \frac{1}{2} \ln^{2}(1-x) + \text{Li}_{2}(-x) + \frac{1}{2} \ln^{2}(1+x) + C $ (partial fractions)

$ \displaystyle = \frac{1}{2} \text{Li}_{2}(x^{2}) + \frac{1}{2} \ln^{2}(1-x) + \frac{1}{2} \ln^{2}(1+x) + C$The constant of integration must be zero.$ \displaystyle \sum_{k=1} H_{k} \frac{x^{2k}}{k} = \text{Li}_{2}(x^{2})+ \frac{1}{2} \ln^{2}(1-x^{2})$So

$ \displaystyle \sum_{k=1}^{\infty} \left( H_{2k} - \frac{1}{2} H_{k} \right) \frac{x^{2k}}{k}= \frac{1}{2} \text{Li}_{2}(x^{2}) + \frac{1}{2} \ln^{2}(1-x) + \frac{1}{2} \ln^{2}(1+x) - \frac{1}{2} \text{Li}_{2}(x^{2}) - \frac{1}{4} \ln^{2}(1-x^{2}) $

$ \displaystyle = \frac{1}{2} \ln^{2}(1-x) + \frac{1}{2} \ln^{2}(1+x) - \frac{1}{4} \Big( \ln(1-x) + \ln(1+x) \Big)^{2} $

$ \displaystyle = \frac{1}{4} \ln^{2}(1-x) + \frac{1}{4} \ln^{2}(1+x) - \frac{1}{2} \ln(1-x) \ln(1+x)$

$ \displaystyle = \Big( \frac{1}{2} \ln(1-x) - \frac{1}{2} \ln(1+x) \Big)^{2} $

$ \displaystyle = \frac{1}{4} \ln^{2} \Big( \frac{1+x}{1-x} \Big) $
 
Last edited:
Random Variable said:
$\displaystyle \sum_{k=1}^{\infty} H_{k} x^{k} + \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = 2 \sum_{k=1}^{\infty} H_{2k} x^{2k} = \cdots $

I am not convinced of this step , how did you get $$H_{2k}$$ ?
 
$ \displaystyle \sum_{k=1}^{\infty} H_{k} x^{k} + \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = (H_{1} x + H_{2} x^{2} + H_{3}x^{3}+ H_{4}x^{4} \ldots) + (-H_{1} x^{1} + H_{2} x^{2} - H_{3}x^{3} + H_{4}x^{4} \ldots ) $

$ \displaystyle = 2 H_{2}x^{2} + 2 H_{4}x^{4} + \ldots $

$ \displaystyle = 2 \sum_{k=1}^{\infty} H_{2k} x^{2k} $
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K