What is the Interesting Euler Sum Proven by this Equation?

Click For Summary

Discussion Overview

The discussion revolves around the proof of an Euler sum involving harmonic numbers and their relationship to logarithmic functions. Participants explore various representations and manipulations of the series, focusing on the convergence and equivalence of different expressions related to harmonic numbers.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents an Euler sum involving harmonic numbers and logarithmic functions, seeking a proof.
  • Another participant provides an alternative expression for the sum, suggesting a relationship to logarithmic identities.
  • A different viewpoint emphasizes the need to consider the harmonic numbers in a specific form, indicating a potential source of discrepancy in the results.
  • Participants engage in clarifying the definitions and relationships between different harmonic numbers, particularly distinguishing between sums of odd and even indexed harmonic numbers.
  • Concerns are raised about the validity of certain steps in the derivation, particularly regarding the manipulation of series involving harmonic numbers.
  • One participant acknowledges a mistake in their previous reasoning, indicating a collaborative effort to refine the discussion.

Areas of Agreement / Disagreement

Participants express differing views on the equivalence of their results, with some acknowledging mistakes while others maintain their positions. The discussion remains unresolved regarding the correct interpretation and manipulation of the harmonic numbers involved.

Contextual Notes

Participants highlight potential misunderstandings in the definitions and calculations of harmonic numbers, indicating that the discussion may depend on specific interpretations and assumptions about these mathematical constructs.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following Euler sum

$$\sum_{k\geq 1}\left(1+\frac{1}{3}+\cdots +\frac{1}{2k-1} \right) \frac{x^{2k}}{k}=\frac{1}{4}\ln^2\left( \frac{1+x}{1-x}\right)$$​
 
Last edited:
Physics news on Phys.org
I get that

$$\sum_{k=1}^{\infty} H_{2k-1} \frac{x^{2k}}{k} = \frac{1}{2} \Big( \ln^{2}(1-x) + \ln^{2}(1+x) \Big)$$
The generating function for the harmonic numbers is $ \displaystyle -\frac{\ln(1-x)}{1-x} $.

So

$$ \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = - \frac{\ln(1+x)}{1+x}$$

And

$$ \sum_{k=1}^{\infty} H_{k} x^{k} - \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = 2 \sum_{k=1}^{\infty} H_{2k-1} x^{2k-1} = -\frac{\ln(1-x)}{1-x} + \frac{\ln(1+x)}{1+x}$$

Now integrate.

$$

\sum_{k=1}^{\infty} H_{2k-1} \frac{x^{2k}}{k} = - \int \frac{\ln(1-x)}{1-x} \ dx + \int \frac{\ln(1+x)}{1+x} \ dx $$

$$ = \frac{1}{2} \Big( \ln^{2}(1-x) + \ln^{2}(1+x) \Big) + C$$

And when $x$ is zero, $ \displaystyle \frac{1}{2} \Big( \ln^{2}(1-x) + \ln^{2}(1+x) \Big) =0$. So $C = 0 $.
 
I think you should consider the harmonic numbers

$$H_{2k}+ H'_{2k}$$ , that's way you got a different answer .
 
Last edited:
But our answers aren't equivalent.
 
Last edited:
$$1+\frac{1}{3}+\frac{1}{5}+\cdots +\frac{1}{2k-1}= \left(1+\frac{1}{2}+\frac{1}{3} +\cdots +\frac{1}{2k-1}+\frac{1}{2k}\right)-\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{k} \right)=H_{2k} -\frac{1}{2}H_k$$

- - - Updated - - -

I think you are evaluating $$H_{2k-1}\neq 1+\frac{1}{3}+\frac{1}{5}+\cdots +\frac{1}{2k-1}$$
 
Yeah. My mistake. Sorry.
 
Redo (Smile)
$ \displaystyle \sum_{k =1}^{\infty} \left(1+\frac{1}{3}+\cdots +\frac{1}{2k-1} \right) \frac{x^{2k}}{k} = \sum_{k=1}^{\infty} \left( H_{2k} - \frac{1}{2} H_{k} \right) \frac{x^{2k}}{k} $$\displaystyle \sum_{k=1}^{\infty} H_{k} x^{k} + \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = 2 \sum_{k=1}^{\infty} H_{2k} x^{2k} = - \frac{\ln(1-x)}{1-x} - \frac{\ln(1+x)}{1+x}$$\displaystyle \sum_{k=1}^{\infty} H_{2k} \frac{x^{2k}}{k} = - \frac{1}{2} \int \frac{\ln(1-x)}{x(1-x)} \ dx - \frac{1}{2} \int \frac{\ln(1+x)}{x(1+x)} \ dx $

$ \displaystyle = \text{Li}_{2} (x) + \frac{1}{2} \ln^{2}(1-x) + \text{Li}_{2}(-x) + \frac{1}{2} \ln^{2}(1+x) + C $ (partial fractions)

$ \displaystyle = \frac{1}{2} \text{Li}_{2}(x^{2}) + \frac{1}{2} \ln^{2}(1-x) + \frac{1}{2} \ln^{2}(1+x) + C$The constant of integration must be zero.$ \displaystyle \sum_{k=1} H_{k} \frac{x^{2k}}{k} = \text{Li}_{2}(x^{2})+ \frac{1}{2} \ln^{2}(1-x^{2})$So

$ \displaystyle \sum_{k=1}^{\infty} \left( H_{2k} - \frac{1}{2} H_{k} \right) \frac{x^{2k}}{k}= \frac{1}{2} \text{Li}_{2}(x^{2}) + \frac{1}{2} \ln^{2}(1-x) + \frac{1}{2} \ln^{2}(1+x) - \frac{1}{2} \text{Li}_{2}(x^{2}) - \frac{1}{4} \ln^{2}(1-x^{2}) $

$ \displaystyle = \frac{1}{2} \ln^{2}(1-x) + \frac{1}{2} \ln^{2}(1+x) - \frac{1}{4} \Big( \ln(1-x) + \ln(1+x) \Big)^{2} $

$ \displaystyle = \frac{1}{4} \ln^{2}(1-x) + \frac{1}{4} \ln^{2}(1+x) - \frac{1}{2} \ln(1-x) \ln(1+x)$

$ \displaystyle = \Big( \frac{1}{2} \ln(1-x) - \frac{1}{2} \ln(1+x) \Big)^{2} $

$ \displaystyle = \frac{1}{4} \ln^{2} \Big( \frac{1+x}{1-x} \Big) $
 
Last edited:
Random Variable said:
$\displaystyle \sum_{k=1}^{\infty} H_{k} x^{k} + \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = 2 \sum_{k=1}^{\infty} H_{2k} x^{2k} = \cdots $

I am not convinced of this step , how did you get $$H_{2k}$$ ?
 
$ \displaystyle \sum_{k=1}^{\infty} H_{k} x^{k} + \sum_{k=1}^{\infty} (-1)^{k} H_{k} x^{k} = (H_{1} x + H_{2} x^{2} + H_{3}x^{3}+ H_{4}x^{4} \ldots) + (-H_{1} x^{1} + H_{2} x^{2} - H_{3}x^{3} + H_{4}x^{4} \ldots ) $

$ \displaystyle = 2 H_{2}x^{2} + 2 H_{4}x^{4} + \ldots $

$ \displaystyle = 2 \sum_{k=1}^{\infty} H_{2k} x^{2k} $
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K