MHB What is the last odd digit in the factorial sequence?

  • Thread starter Thread starter ittalo25
  • Start date Start date
  • Tags Tags
    Factorial
ittalo25
Messages
1
Reaction score
0
Hi guys, my english is very bad but let me try translate the question:

Let $ a_n=\frac{(n+9)!}{(n-1)!} $ . Let k the lesser natural number since that the first digit (on the right side) after all the zeros of $ a_k $ is odd.

Example: $ a_k =$ 4230000000 or $ a_k =$ 62345000

This odd digit number is:

a) 1
b) 3
c) 5
d) 7
e) 9$ a_k = \frac{(k+9)!}{(k-1)!} = k \cdot (k+1)\cdot(k+2)\cdot (k+3)\cdot ... \cdot (k+9) $

We have ten consecutives numbers, which are 5 odds and 5 evens.

By the conditions, we need to have $ a_k = 2^{x}\cdot 5^{y}\cdot... $ with $y \geq x$

But I don't know how continue.
 
Mathematics news on Phys.org
ittalo25 said:
Hi guys, my english is very bad but let me try translate the question:

Let $ a_n=\frac{(n+9)!}{(n-1)!} $ . Let k the lesser natural number since that the first digit (on the right side) after all the zeros of $ a_k $ is odd.

Example: $ a_k =$ 4230000000 or $ a_k =$ 62345000

This odd digit number is:

a) 1
b) 3
c) 5
d) 7
e) 9$ a_k = \frac{(k+9)!}{(k-1)!} = k \cdot (k+1)\cdot(k+2)\cdot (k+3)\cdot ... \cdot (k+9) $

We have ten consecutives numbers, which are 5 odds and 5 evens.

By the conditions, we need to have $ a_k = 2^{x}\cdot 5^{y}\cdot... $ with $y \geq x$

But I don't know how continue.

There are more 5's than 2 . after 5's get paired with 2 we get zeros at the end and only od numberer remains along with 5. so last non zero digit is 5.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
903
Replies
1
Views
2K
Replies
21
Views
4K
Replies
8
Views
2K
Replies
4
Views
985
Back
Top