What is the limit of (sin sqrt(x+1) - sin sqrt(x)) as x approaches infinity?

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The limit of the expression $\displaystyle \lim_{x \to \infty} (\sin \sqrt{x+1}-\sin \sqrt{x})$ evaluates to 0. This conclusion is supported by the solutions provided by forum members MarkFL and magneto, who utilized calculus techniques to arrive at the result. Both solutions highlight the behavior of the sine function as the argument approaches infinity, confirming that the difference between the two sine values diminishes to zero.

PREREQUISITES
  • Understanding of calculus, specifically limits and continuity.
  • Familiarity with trigonometric functions, particularly the sine function.
  • Knowledge of asymptotic behavior of functions as they approach infinity.
  • Basic skills in mathematical notation and manipulation.
NEXT STEPS
  • Study the properties of limits in calculus, focusing on trigonometric functions.
  • Explore the concept of continuity and differentiability in relation to limits.
  • Learn about the Squeeze Theorem and its applications in limit evaluation.
  • Investigate the behavior of oscillatory functions as their arguments approach infinity.
USEFUL FOR

Students of calculus, mathematicians, and anyone interested in advanced limit evaluation techniques in trigonometry.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Thank you to anemone for this problem! :)

Calculate $\displaystyle \lim_{x \to \infty} (\sin \sqrt{x+1}-\sin \sqrt{x})$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) magneto

Solution (from MarkFL):
Let:

$$L=\lim_{x\to\infty}\left(\sin\left(\sqrt{x+1} \right)-\sin\left(\sqrt{x} \right) \right)$$

Application of the sum-to-product identity:

$$\sin(\alpha)-\sin(\beta)=2\sin\left(\frac{\alpha-\beta}{2} \right)\cos\left(\frac{\alpha+\beta}{2} \right)$$

And the limit property:

$$\lim_{x\to c}\left(k\cdot f(x) \right)=k\cdot\lim_{x\to c}\left(f(x) \right)$$

Allows us to write:

$$L=2\lim_{x\to\infty}\left(\sin\left(\frac{\sqrt{x+1}-\sqrt{x}}{2} \right)\cos\left(\frac{\sqrt{x+1}+\sqrt{x}}{2} \right) \right)$$

Rationalization of the numerator of the sine function gives us:

$$L=2\lim_{x\to\infty} \left( \sin \left(\frac{1}{2 \left( \sqrt{x+1}+ \sqrt{x} \right)} \right) \cos \left(\frac{ \sqrt{x+1}+ \sqrt{x}}{2} \right) \right)$$

Now, using the property of limits:

$$\lim_{x\to c}\left(f(x)\cdot g(x) \right)=\left(\lim_{x\to c}\left(f(x) \right) \right)\left(\lim_{x\to c}\left(g(x) \right) \right)$$

We obtain:

$$L=2 \lim_{x \to\infty} \left( \sin \left( \frac{1}{2 \left( \sqrt{x+1}+ \sqrt{x} \right)} \right) \right) \lim_{x \to\infty} \left( \cos \left( \frac{ \sqrt{x+1}+ \sqrt{x}}{2} \right) \right)$$

The first limit goes to zero, and the second limit is bounded, hence:

$$L=0$$
Alternate solution using calculus (from magneto):
Define $f(x) := \sin \sqrt{x}$. The limit can be rewritten as $f(x+1)-f(x)$. Since
$f$ is continuous and differentiable on $\mathbb{R}^+$, by the Mean Value Theorem, we can find
$c \in [x, x+1]$ where:
\begin{equation}
f'(c) = \frac{f(x+1)-f(x)}{(x+1)-x}.
\end{equation}
For any given $x$, we can find $c \geq x$, so the equation can be rewritten as:
\begin{equation}
\sin \sqrt{x+1} - \sin \sqrt{x} = f'(c) = \frac{\cos \sqrt{c}}{2 \sqrt{c}} \leq \frac{\cos\sqrt{c}}{2\sqrt{x}}.
\end{equation}
Therefore,
\begin{equation}
\bigl|{\sin \sqrt{x+1} - \sin \sqrt{x}} \bigr| \leq \frac{\bigl|{\cos\sqrt{c}}\bigr|}{\bigl|{2\sqrt{x}}\bigr|} \leq \frac{1}{2\sqrt{x}}.
\end{equation}
We know that $\lim_{x \to \infty} \frac{1}{2\sqrt{x}} = 0$, so by the Squeeze Theorem and last equation
we have that:
\begin{equation}
\lim_{x \to \infty} (\sin \sqrt{x+1} - \sin \sqrt{x}) = 0.
\end{equation}
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
2K