MHB What is the Limit of the Poisson Kernel Prove for $r\to 1$?

Click For Summary
The limit of the Poisson kernel as \( r \to 1 \) is shown to be infinite for \( \theta = 0 \) and zero for all other values of \( \theta \). The proof involves evaluating \( P(1,0) \), which results in an infinite summation, confirming that \( \lim_{r\to 1} P(r,0) = \infty \). For \( \theta \neq 0 \), the fractional representation of the Poisson kernel leads to \( P(1,\theta) = 0 \). The discussion also touches on variations in the definition of the Poisson kernel found in different sources. Overall, the limit behavior of the Poisson kernel is clearly established.
Dustinsfl
Messages
2,217
Reaction score
5
Prove:
$$
\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$
For the first piece, take the summation
$$
P(1,0) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} 1^n\right).
$$
Then $\sum\limits_{n = 1}^{\infty} 1^n = \infty$.
Therefore, we have a positive number plus infinity which is infinity when $r\to 1$ and $\theta = 0$.
For the second piece, take the fractional representation of the Poisson kernel,
$$
P(1,\theta) = \frac{1}{2\pi}\frac{0}{2 - 2\cos\theta} = 0.
$$
Therefore, $P(r,\theta) = 0$ for all $\theta\neq 0$.
That is,
$$\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$
 
Physics news on Phys.org
Could you write the definition of Poisson kernel?
 
girdav said:
Could you write the definition of Poisson kernel?

$$
P(r,\theta) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} r^n\cos\theta\right) = \frac{1}{2\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}
$$
 
dwsmith said:
$$
P(r,\theta) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} r^n\cos\theta\right) = \frac{1}{2\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}
$$

Can you please tell me where you found this definition?
 
Sudharaka said:
Can you please tell me where you found this definition?

A class on Fourier series

A class on Engineering Analysis

The book Elementary Partial Differential Equations by Berg and McGregor

My Engineering Analysis book that I can't remember the name.

Separate handout notes by my Fourier Analysis professor.
 
dwsmith said:
A class on Fourier series

A class on Engineering Analysis

The book Elementary Partial Differential Equations by Berg and McGregor

My Engineering Analysis book that I can't remember the name.

Separate handout notes by my Fourier Analysis professor.

I suggest you to check the definition again. The correct one is given >>here<<.

\begin{eqnarray}

P_r(\theta)&=&\sum_{n=-\infty}^\infty r^{|n|}e^{in\theta}=\frac{1-r^2}{1-2r\cos\theta +r^2}\mbox{ where }0 \le r < 1.\\

&=&\sum_{n=-\infty}^\infty r^{|n|}\cos(n\theta)+i\sum_{n=-\infty}^\infty r^{|n|}\sin(n\theta)\\

\end{eqnarray}

Since, \(r^{|n|}\sin(n\theta)\) is an odd function it is clear that the second sum is equal to zero.

\begin{eqnarray}

\therefore P_r(\theta)&=&\sum_{n=-\infty}^\infty r^{|n|}\cos(n\theta)\\

&=&1+2\sum_{n=1}^\infty r^{n}\cos(n\theta)\\

\end{eqnarray}

Hence we finally get,

\[P_r(\theta)=1+2\sum_{n=1}^\infty r^{n}\cos(n\theta)= \frac{1-r^2}{1-2r\cos\theta +r^2}\mbox{ where }0 \le r < 1.\]
 
Sudharaka said:
I suggest you to check the definition again. The correct one is given >>here<<.

\begin{eqnarray}

P_r(\theta)&=&\sum_{n=-\infty}^\infty r^{|n|}e^{in\theta}=\frac{1-r^2}{1-2r\cos\theta +r^2}\mbox{ where }0 \le r < 1.\\

&=&\sum_{n=-\infty}^\infty r^{|n|}\cos(n\theta)+i\sum_{n=-\infty}^\infty r^{|n|}\sin(n\theta)\\

\end{eqnarray}

Since, \(r^{|n|}\sin(n\theta)\) is an odd function it is clear that the second sum is equal to zero.

\begin{eqnarray}

\therefore P_r(\theta)&=&\sum_{n=-\infty}^\infty r^{|n|}\cos(n\theta)\\

&=&1+2\sum_{n=1}^\infty r^{n}\cos(n\theta)\\

\end{eqnarray}

Hence we finally get,

\[P_r(\theta)=1+2\sum_{n=1}^\infty r^{n}\cos(n\theta)= \frac{1-r^2}{1-2r\cos\theta +r^2}\mbox{ where }0 \le r < 1.\]

The books are already opened to the pages. I see it clearly.
 
dwsmith said:
Photo of Poisson Kernel

https://www.physicsforums.com/attachments/396

Poisson Kernel -- from Wolfram MathWorld

Yes it seems that there is a slight difference in the definition of the Poisson Kernel. In some books it's defined as,

\[P(r,\theta)=\frac{1-r^2}{1-2r\cos\theta +r^2}\]

whereas in others,

\[P(r,\theta)=\frac{1}{2\pi}\frac{1-r^2}{1-2r\cos\theta +r^2}\]

You seem to be using this second definition. However notice that you are missing a \(n\) in the summation of post #3.

\[P(r,\theta) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} r^n\cos({\color{red}n}\theta)\right) = \frac{1}{2\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}\]
 
  • #10
Sudharaka said:
\[P(r,\theta) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} r^n\cos({\color{red}n}\theta)\right) = \frac{1}{2\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}\]
Typo.
Is my soln correct?
 
  • #11
dwsmith said:
Prove:
$$
\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$
For the first piece, take the summation
$$
P(1,0) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} 1^n\right).
$$
Then $\sum\limits_{n = 1}^{\infty} 1^n = \infty$.
Therefore, we have a positive number plus infinity which is infinity when $r\to 1$ and $\theta = 0$.
For the second piece, take the fractional representation of the Poisson kernel,
$$
P(1,\theta) = \frac{1}{2\pi}\frac{0}{2 - 2\cos\theta} = 0.
$$
Therefore, $P({\color{red}1},\theta) = 0$ for all $\theta\neq 0$.
That is,
$$\lim_{r\to 1}P(r,\theta) = \begin{cases}
\infty, & \theta = 0\\
0, & \text{otherwise}
\end{cases}
$$

Yeah it's correct. (Yes)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K