What is the Log Concavity of Determinants for Positive Definite Matrices?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Determinants Log
Click For Summary
SUMMARY

The discussion centers on proving the log concavity of determinants for positive definite matrices A and B, specifically demonstrating that for 0 ≤ t ≤ 1, the inequality $$\det(tA + (1 - t)B) \ge \det(A)^t\det(B)^{1-t}$$ holds true. Participants noted an error in previous arguments but successfully refined their proof. Acknowledgment was given to user @Office_Shredder for providing a clear and effective proof of the concept.

PREREQUISITES
  • Understanding of positive definite matrices
  • Familiarity with determinants and their properties
  • Knowledge of convex functions and inequalities
  • Basic linear algebra concepts
NEXT STEPS
  • Study the properties of positive definite matrices in depth
  • Explore the concept of log concavity in mathematical analysis
  • Learn about the applications of determinants in optimization problems
  • Investigate further proofs related to matrix inequalities
USEFUL FOR

Mathematicians, students of linear algebra, and researchers interested in matrix theory and optimization techniques will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##A, B\in M_n(\mathbb{R})## be positive definite matrices. Prove that for ##0\le t\le 1##, $$\det(tA + (1 - t)B) \ge \det(A)^t\det(B)^{1-t}$$
 
  • Like
Likes   Reactions: Greg Bernhardt and topsquark
Physics news on Phys.org
The case ##t=0## is considered separately. Obviously

$$
\det B \geq (\det A)^0 \det B .
$$

We now consider the case ##0 < t \leq 1##. I start with

$$
\det (t A + (1-t) B) \geq (\det A)^t (\det B)^{1-t}
$$

and work backwards to an inequality that can be seen to hold. Take the log of both sides

$$
\ln \det ( t A + (1-t) B) \geq t \ln \det A + (1-t) \ln \det B
$$

where we have used that ##\det A > 0## and ##\det B > 0##. As ##\det A \not= 0## the matrix ##A## has an inverse and the above inequality becomes

$$
\ln \det [tA ( \mathbb{1} + t^{-1} (1-t) A^{-1} B)] \geq t \ln \det A + (1-t) \ln \det B
$$

or

$$
\ln \det (t A) + \ln \det ( \mathbb{1} + t^{-1} (1-t) A^{-1} B) \geq t \ln \det A + (1-t) \ln \det B
$$

or

$$
nt + \ln \det ( \mathbb{1} + t^{-1} (1-t) A^{-1} B) \geq (1-t) (\ln \det B - \ln \det A)
$$

or

$$
nt + \ln \det ( \mathbb{1} + t^{-1} (1-t) A^{-1} B) \geq (1-t) \ln \det A^{-1} B
$$

The matrix ##A^{-1} B## is not necessarily symmetric and so can't in general be diagonalised, but there is a similarity transformation that puts it into Jordan normal form. So that

$$
nt + \ln \det [S^{-1} ( \mathbb{1} + t^{-1} (1-t) A^{-1} B) S] \geq (1-t) \ln \det (S^{-1} A^{-1} B S)
$$

becomes

$$
nt + \ln \det ( \mathbb{1} + t^{-1} (1-t) J) \geq (1-t) \ln \det J
$$

Which, in terms of eigenvalues is

$$
nt + \ln \prod_{i=1}^n ( 1 + t^{-1} (1-t) \lambda_i^{-1} \mu_i) \geq (1-t) \ln (\prod_{i=1}^n \lambda_i^{-1} \mu_i)
$$

where ##\lambda_i## are the eigenvalues of ##A## and ##\mu_i## are the eigenvalues of ##B##. These eigenvalues are positive and so the logarithm makes sense. The above inequality can be rewritten as

$$
nt + \sum_{i=1}^n ( 1 + t^{-1} (1-t) \lambda_i^{-1} \mu_i) \geq (1-t) \sum_{i=1}^n \lambda_i^{-1} \mu_i
$$

or

\begin{align*}
nt + \sum_{i=1}^n 1 & \geq [(1-t) - t^{-1} (1-t)] \sum_{i=1}^n \lambda_i^{-1} \mu_i
\nonumber \\
& = - (1-t)^2 t^{-1} \sum_{i=1}^n \lambda_i^{-1} \mu_i
\end{align*}

which obviously holds as the RHS is non-positive for ##t \in (0,1]## as ##\lambda_i^{-1} \mu_i## (##i = 1 , \dots , n##) is positive.
 
  • Like
Likes   Reactions: topsquark
I think I spotted an error in the argument of my previous post, but I think I know how to fix it.

EDIT: on 9th Sept I have added further explanation.

In my previous post I demonstrated that

$$
\det (t A + (1-t) B) \geq (\det A)^t (\det B)^{1-t}
$$

reduces to

$$
nt + \ln \det ( \mathbb{1} + t^{-1} (1-t) A^{-1} B) \geq (1-t) \ln \det A^{-1} B \qquad (*)
$$

A positive definite matrix has a positive definite square-root matrix. Proof:

The matrix ##B## is positive definite and so there is a similarity transformation such that ##S^{-1} B S = D## where ##D## is the diagonal matrix. Where the matrix ##S## is chosen to be the matrix with the ##n## eigenvectors as columns. The elements of ##D## are eigenvalues of ##B## and so are positive. When a matrix is symmetric, the diagonalizing matrix ##S## can be made an orthogonal matrix by suitably choosing the eigenvectors (then ##S^{-1} = S^T##). As such we can define a positive definite square-root matrix ##B^{1/2} = S D^{1/2} S^T## (##B^{1/2}## has the same eigenvectors as ##B## but with eigenvalues that are the square-root of the eigenvalues of ##B##).
Q.E.D.

Now, the matrix ##A^{-1} B## can be written as ##B^{-1/2} (B^{1/2} A^{-1} B^{1/2}) B^{1/2}##. As such the matrix ##A^{-1} B## has the same eigenvalues as the positive definite matrix ##B^{1/2} A^{-1} B^{1/2}## because:

$$
\det (\mathbb{1} \lambda - A^{-1} B) = \det (\mathbb{1} \lambda - B^{-1/2} (B^{1/2} A^{-1} B^{1/2}) B^{1/2}) = \det (\mathbb{1} \lambda - B^{1/2} A^{-1} B^{1/2})
$$

As such the matrix ##A^{-1} B## has positive eigenvalues, let us denote them as ##\nu_i##.

The matrix ##A^{-1} B## is not necessarily symmetric and so can't in general be diagonalised, but there is a similarity transformation that puts it into Jordan normal form. So that ##(*)## becomes

$$
nt + \ln \det ( \mathbb{1} + t^{-1} (1-t) J) \geq (1-t) \ln \det J
$$

where the diagonal elements of ##J## are the ##\nu_i > 0## (##i = 1 , \dots , n##). This reduces to

$$
nt + \ln \prod_{i=1}^n ( 1 + t^{-1} (1-t) \nu_i) \geq (1-t) \ln (\prod_{i=1}^n \nu_i)
$$

These eigenvalues are positive and so the logarithm makes sense. The above inequality can be rewritten as

$$
nt + \sum_{i=1}^n ( 1 + t^{-1} (1-t) \nu_i) \geq (1-t) \sum_{i=1}^n \nu_i
$$

or

\begin{align*}
nt + \sum_{i=1}^n 1 & \geq [(1-t) - t^{-1} (1-t)] \sum_{i=1}^n \nu_i
\nonumber \\
& = - (1-t)^2 t^{-1} \sum_{i=1}^n \nu_i
\end{align*}

which obviously holds as the RHS is non-positive for ##t \in (0,1]## as ##\nu_i## (##i = 1 , \dots , n##) is positive.
 
Last edited:
I have made a mistake in the previous attempts (inattention!). I think this time I have done the problem.

I start with

$$
\det (t A + (1-t) B) \geq (\det A)^t (\det B)^{1-t}
$$

and work backwards to an inequality that can be proven to hold. Take the log of both sides

$$
\ln \det ( t A + (1-t) B) \geq t \ln \det A + (1-t) \ln \det B
$$

where we have used that ##\det A > 0## and ##\det B > 0##. As ##\det A \not= 0## the matrix ##A## has an inverse and the above inequality becomes

$$
\ln \det [A ( t\mathbb{1} + (1-t) A^{-1} B)] \geq t \ln \det A + (1-t) \ln \det B
$$

or

$$
\ln \det A + \ln \det ( t \mathbb{1} + (1-t) A^{-1} B) \geq t \ln \det A + (1-t) \ln \det B
$$

or

$$
\ln \det ( t \mathbb{1} + (1-t) A^{-1} B) \geq (1-t) (\ln \det B - \ln \det A)
$$

or

$$
\ln \det ( t \mathbb{1} + (1-t) A^{-1} B) \geq (1-t) \ln \det A^{-1} B \qquad (*)
$$

A positive definite matrix has a positive definite square-root matrix. Proof:

The matrix ##B## is positive definite and so there is a similarity transformation such that ##S^{-1} B S = D## where ##D## is the diagonal matrix. Where the matrix ##S## is chosen to be the matrix with the ##n## eigenvectors as columns. The elements of ##D## are eigenvalues of ##B## and so are positive. When a matrix is symmetric, the diagonalizing matrix ##S## can be made an orthogonal matrix by suitably choosing the eigenvectors (then ##S^{-1} = S^T##). As such we can define a positive definite square-root matrix ##B^{1/2} = S D^{1/2} S^T## (##B^{1/2}## has the same eigenvectors as ##B## but with eigenvalues that are the square-root of the eigenvalues of ##B##).
Q.E.D.

Now, the matrix ##A^{-1} B## can be written as ##B^{-1/2} (B^{1/2} A^{-1} B^{1/2}) B^{1/2}##. As such the matrix ##A^{-1} B## has the same eigenvalues as the positive definite matrix ##B^{1/2} A^{-1} B^{1/2}## because:

$$
\det (\mathbb{1} \lambda - A^{-1} B) = \det (\mathbb{1} \lambda - B^{-1/2} (B^{1/2} A^{-1} B^{1/2}) B^{1/2}) = \det (\mathbb{1} \lambda - B^{1/2} A^{-1} B^{1/2})
$$

As such the matrix ##A^{-1} B## has positive eigenvalues, let us denote them as ##\nu_i##.

The matrix ##A^{-1} B## is not necessarily symmetric and so can't in general be diagonalised, but there is a similarity transformation that puts it into Jordan normal form. So that ##(*)## becomes

$$
\ln \det ( t \mathbb{1} + (1-t) J) \geq (1-t) \ln \det J
$$

where the diagonal elements of ##J## are the ##\nu_i > 0## (##i = 1 , \dots , n##). This reduces to

$$
\ln \prod_{i=1}^n ( t + (1-t) \nu_i) \geq (1-t) \ln (\prod_{i=1}^n \nu_i)
$$

These eigenvalues are positive and so the logarithm makes sense. The above inequality can be rewritten as

$$
\sum_{i=1}^n \ln ( t + (1-t) \nu_i) \geq (1-t) \sum_{i=1}^n \ln \nu_i .
$$

In order to prove this inequality we introduce the function:

$$
f(t) = \sum_{i=1}^n \ln ( t + (1-t) \nu_i) - (1-t) \sum_{i=1}^n \ln \nu_i .
$$

First note that ##f(0) = f(1) = 0##. The first derivative is

$$
f'(t) = \sum_{i=1}^n \frac{1- \nu_i}{\nu_i + t (1- \nu_i)} + \sum_{i=1}^n \ln \nu_i
$$

and so the second derivative is

$$
f'' (t) = - \sum_{i=1}^n \frac{(1- \nu_i)^2}{(\nu_i + t (1- \nu_i))^2} < 0 .
$$

As ##f(t)## is twice-differentiable and ##f''(t)## is non-positive the function is concave. Combining this with ##f(0) = f(1) = 0##, we have

$$
f (t) = f ((1-t) \cdot 0 + t \cdot 1) \geq (1-t) f(0) + t f(1) = 0
$$

for ##t \in [0,1]##.
 
Last edited:
  • Like
Likes   Reactions: Euge
For every ##t\in [0,1]##, ##tA + (1 - t)B## is real positive definite. Hence
$$
\frac{\pi^{n/2}}{\sqrt{\det(tA + (1 - t)B)}} = \int_{\mathbf{R}^n} e^{-\mathbf{x}\cdot (tA + (1 - t)B)\mathbf{x}}\, d\mathbf{x} = \int_{\mathbf{R}^n} (e^{-\mathbf{x}\cdot A\mathbf{x}})^t (e^{-\mathbf{x}\cdot B\mathbf{x}})^{1-t}\, d\mathbf{x}
$$
By Hölder's inequality applied with conjugate exponents ##1/t## and ##1/(1-t)##, the latter integral is dominated by
$$
\left(\int_{\mathbf{R}^n} e^{-\mathbf{x}\cdot A\mathbf{x}}\, d\mathbf{x}\right)^t \left(\int_{\mathbf{R}^n} e^{-\mathbf{x}\cdot B\mathbf{x}}\, d\mathbf{x}\right)^{1-t}
$$
The latter expression equals
$$
\left(\frac{\pi^{n/2}}{\sqrt{\det A}}\right)^t \left(\frac{\pi^{n/2}}{\sqrt{\det B}}\right)^{1-t} = \frac{\pi^{n/2}}{\sqrt{(\det A)^t (\det B)^{1-t}}}
$$
Thus
$$
\frac{\pi^{n/2}}{\sqrt{\det(tA + (1 - t)B)}} \le \frac{\pi^{n/2}}{\sqrt{(\det A)^t (\det B)^{1-t}}}
$$
which is equivalent to the desired inequality.
 
  • Like
Likes   Reactions: Infrared, Office_Shredder and julian
Wow, that's a ridiculously slick proof.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
4K
  • · Replies 29 ·
Replies
29
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
937
  • · Replies 1 ·
Replies
1
Views
2K