MHB What is the maximum and minimum value of k?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0

Attachments

  • max(k) and min(k).jpg
    max(k) and min(k).jpg
    15.1 KB · Views: 115
Mathematics news on Phys.org
We have k = a + b+ d + e
k = c + d + g + h
k = f + g + i + j

add all 3 to get 3k = a+b+c+d+e+f+g+h+i + (d+g) = 65+ (d+g) as sum of numbers 65 + d +g is multiple of 3

for the lowest
we need to choose d+g lowest such that 65 + d +g is multiple of 3 and d + g is lowest. Do d+g mod 3 = 1 , it canntot be 1 or 4 as the lowest is 2+ 3 = 5 so 7
that gives d = 2 ; g =5 and lowest sum = 24 ( there is more than one solution and one is given below)
( a = 10, b= 8, d = 2, e = 4, c = 11, g= 5, h = 6, f = 9, i = 5, j = 3) satisfies it
for the highest
we need to choose d+g highest such that + d +g is multiple of 3 and d + g is highest . Do d+g mod 3 = 1 , it < 21 so it is 20
that gives d = 10 ; g =9 and lowest sum = 24
( a = 7, b= 3, d = 10, e = 8, c = 5, g= 9, h = 4, f = 11, i = 2, j = 6) satisfies it
Lowest k = 24, highest k = 28
 
kaliprasad said:
We have k = a + b+ d + e
k = c + d + g + h
k = f + g + i + j

add all 3 to get 3k = a+b+c+d+e+f+g+h+i + (d+g) = 65+ (d+g) as sum of numbers 65 + d +g is multiple of 3

for the lowest
we need to choose d+g lowest such that 65 + d +g is multiple of 3 and d + g is lowest. Do d+g mod 3 = 1 , it canntot be 1 or 4 as the lowest is 2+ 3 = 5 so 7
that gives d = 2 ; g =5 and lowest sum = 24 ( there is more than one solution and one is given below)
( a = 10, b= 8, d = 2, e = 4, c = 11, g= 5, h = 6, f = 9, i = 5, j = 3) satisfies it
for the highest
we need to choose d+g highest such that + d +g is multiple of 3 and d + g is highest . Do d+g mod 3 = 1 , it < 21 so it is 20
that gives d = 10 ; g =9 and lowest sum = 24
( a = 7, b= 3, d = 10, e = 8, c = 5, g= 9, h = 4, f = 11, i = 2, j = 6) satisfies it
Lowest k = 24, highest k = 28
yes, your answer is correct :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top