MHB What Is the Maximum Value of \(a\) in This Polynomial Inequality?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
The discussion focuses on determining the maximum value of \(a\) in the polynomial inequality \(x^4+y^4+z^4+xyz(x+y+z) \geq a(xy+yz+zx)^2\). Participants are encouraged to explore various approaches to find the greatest value of \(a\) that satisfies the inequality for all real numbers \(x\), \(y\), and \(z\). The hint emphasizes the importance of testing different values and configurations of \(x\), \(y\), and \(z\) to derive the solution. The conversation may include algebraic manipulations and potential substitutions to simplify the problem. Ultimately, the goal is to establish the conditions under which the inequality holds true for all specified variables.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the greatest value of $a$ for which the inequality $x^4+y^4+z^4+xyz(x+y+z)≥ a(xy+yz+zx)^2$ holds for all values ​​of $x ,\,y$ and $z$.
 
Mathematics news on Phys.org
Hint:

$x^2+y^2+z^2\ge xy+yz+xz$
 
anemone said:
Find the greatest value of $a$ for which the inequality $x^4+y^4+z^4+xyz(x+y+z)≥ a(xy+yz+zx)^2$ holds for all values ​​of $x ,\,y$ and $z$.

My solution:

Note that

$(x^2+y^2+z^2)^2=x^4+y^4+z^4+2(x^2y^2+y^2z^2+x^2z^2)$ and $(xy+yz+xz)^2=x^2y^2+y^2z^2+x^2z^2+2xyz(x+y+z)$ so the LHS of the inequality can be rewritten as:

$\begin{align*}x^4+y^4+z^4+xyz(x+y+z)&=(x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+x^2z^2)+\dfrac{(xy+yz+xz)^2}{2}-\dfrac{x^2y^2+y^2z^2+x^2z^2}{2}\\&=(x^2+y^2+z^2)^2-5\left(\dfrac{x^2y^2+y^2z^2+x^2z^2}{2}\right)+\dfrac{(xy+yz+xz)^2}{2}\end{align*}$

From Cauchy Schwarz inequality we have

$(x^2+y^2+z^2)^2\ge 3(x^2y^2+y^2z^2+x^2z^2)\ge (xy+yz+xz)^2$

Therefore we get

$\begin{align*}x^4+y^4+z^4+xyz(x+y+z)&=(x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+x^2z^2)+\dfrac{(xy+yz+xz)^2}{2}-\dfrac{x^2y^2+y^2z^2+x^2z^2}{2}\\&=(x^2+y^2+z^2)^2-5\left(\dfrac{x^2y^2+y^2z^2+x^2z^2}{2}\right)+\dfrac{(xy+yz+xz)^2}{2}\\&\ge (xy+yz+xz)^2-5\left(\dfrac{\dfrac{(xy+yz+xz)^2}{3}}{2}\right)+\dfrac{(xy+yz+xz)^2}{2}\\&\ge \dfrac{2}{3}(xy+yz+zx)^2\end{align*}$

Therefore the greatest value of $a$ is $\dfrac{2}{3}$, equality occurs at $x=y=z$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K