MHB What is the meaning of one-to-one correspondence between subsets of S?

  • Thread starter Thread starter yakin
  • Start date Start date
  • Tags Tags
    Subsets
AI Thread Summary
One-to-one correspondence refers to a function that establishes a unique mapping between elements of two sets, ensuring that each element in the domain corresponds to a unique element in the range. A function is considered one-to-one if it passes both the vertical and horizontal line tests, meaning no vertical or horizontal line intersects the function at more than one point. The term "one-to-one correspondence" is often used interchangeably with "bijective function," which is both one-to-one and onto, indicating that every element in the codomain is covered. This concept is crucial for demonstrating that two infinite sets have the same cardinality. Understanding these definitions clarifies the relationship between functions and their mappings.
yakin
Messages
42
Reaction score
0
What is the meaning of one-to-one correspondence between subsets of S?
 
Physics news on Phys.org
So, a function you can think of as a subset of points in the $xy$ plane that satisfy a vertical line test: no vertical line you draw can touch the function in more than one place. If, in addition, the function passes a horizontal line test (no horizontal line you could draw touches the function in more than one place), then we say the function is one-to-one. When you say "one-to-one correspondence", you typically mean a one-to-one function.

More formally: a one-to-one function is a function that maps unique points in the domain to unique points in the range. (And of course, if it's a function, then unique points in the range had to come from unique points in the domain.)
 
Ackbach said:
When you say "one-to-one correspondence", you typically mean a one-to-one function.
Wikipedia says that one-to-one correspondence is a bijective function, i.e., a function that is both one-to-one and onto. I've seen this interpretation before as well. And yes, it is confusing.
 
Evgeny.Makarov said:
Wikipedia says that one-to-one correspondence is a bijective function, i.e., a function that is both one-to-one and onto. I've seen this interpretation before as well. And yes, it is confusing.

Sure, although in this context, it likely means a function between two infinite sets that allows you to conclude that they have the same cardinality. Is "onto" a necessary property to show this?
 
Of course: the fact that two sets have the same cardinality is evidenced by a bijection, and by definition it is both one-to-one and onto.

In any case, this is the terminology that I've seen so far.
  • One-to-one function: a function that maps different inputs to different outputs.
  • One-to-one correspondence: a function that is one-to-one and onto, i.e., covers the whole codomain.
 
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
10
Views
2K
Replies
1
Views
3K
Back
Top