What is the negation of this statement and which statement is true, R or ¬R?

  • Context: MHB 
  • Thread starter Thread starter rayne1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the logical statement R, defined as R = (∀x ∈ Z)(P(x) ⇒ ((∃y ∈ Z)(E(y) ∧ D(x, y)))), where P(x) asserts "x is prime," E(x) asserts "x is even," and D(x, y) asserts "x divides y." The negation of R is established as ¬R = (∃x ∈ Z)(P(x) ∧ (∀y ∈ Z)((¬E(y)) ∨ (¬D(x, y))). Participants conclude that ¬R is true, and the logical equivalence (P(x) ⇒ Q(x)) = (¬P(x) ∨ Q(x)) is discussed, clarifying the relationship between R and its negation.

PREREQUISITES
  • Understanding of first-order logic and quantifiers
  • Familiarity with logical implications and equivalences
  • Basic knowledge of prime numbers and even numbers
  • Concept of divisibility in integers
NEXT STEPS
  • Study logical equivalences in propositional calculus
  • Explore the properties of prime numbers and their implications in number theory
  • Learn about quantifiers in mathematical logic
  • Investigate the concept of divisibility and its applications in proofs
USEFUL FOR

Mathematicians, logic enthusiasts, students of discrete mathematics, and anyone interested in understanding logical statements and their negations.

rayne1
Messages
32
Reaction score
0
Let P(x) be assertion “x is prime”, E(x) be “x is even”, and D(x, y) be “x divides y” (i.e., y/x is an integer). Consider the following statement:
R = (∀x ∈ Z)(P(x) ⇒ ((∃y ∈ Z)(E(y) ∧ D(x, y))))

Write the negation of R, and determine which statement is true, R or ¬R.

I tried, but I'm not sure if I got the correct answer:
¬R = (∃x ∈ Z)(P(x) ∧ (∀y ∈ Z)((¬E(y)) ∨ (¬D(x, y)))

It seems that ¬R is true.
 
Physics news on Phys.org
rayne said:
Let P(x) be assertion “x is prime”, E(x) be “x is even”, and D(x, y) be “x divides y” (i.e., y/x is an integer). Consider the following statement:
R = (∀x ∈ Z)(P(x) ⇒ ((∃y ∈ Z)(E(y) ∧ D(x, y))))

Write the negation of R, and determine which statement is true, R or ¬R.

I tried, but I'm not sure if I got the correct answer:
¬R = (∃x ∈ Z)(P(x) ∧ (∀y ∈ Z)((¬E(y)) ∨ (¬D(x, y)))

It seems that ¬R is true.

Hi rayne!

Let's define:
Q(x) = (∃y ∈ Z)(E(y) ∧ D(x, y))

Then we have:
R = (∀x ∈ Z)(P(x) ⇒Q(x))

So:
¬R = (∃x ∈ Z)(¬(P(x) ⇒Q(x)))

Did you know that:
(P(x) ⇒Q(x)) = (P(x) ∨ ¬Q(x))
(Wondering)

So what does that make ¬(P(x) ⇒Q(x))?
 
I like Serena said:
Hi rayne!

Let's define:
Q(x) = (∃y ∈ Z)(E(y) ∧ D(x, y))

Then we have:
R = (∀x ∈ Z)(P(x) ⇒Q(x))

So:
¬R = (∃x ∈ Z)(¬(P(x) ⇒Q(x)))

Did you know that:
(P(x) ⇒Q(x)) = (P(x) ∨ ¬Q(x))
(Wondering)

So what does that make ¬(P(x) ⇒Q(x))?
P(x)∧(¬Q(x))
 
rayne said:
P(x)∧(¬Q(x))

How did you get that?
 
I like Serena said:
How did you get that?
I know that they're logically equivalent
 
rayne said:
I know that they're logically equivalent

So you're saying that:
¬(P(x) ⇒Q(x)) = (P(x)∧(¬Q(x)))

Let's take another look.
Substitute (P(x) ⇒Q(x)) = (P(x) ∨ ¬Q(x)) to get:
¬(P(x) ⇒Q(x)) = ¬(P(x) ∨ ¬Q(x))

... but wait! Isn't that the negation of what you are saying? :eek:
 
I like Serena said:
So you're saying that:
¬(P(x) ⇒Q(x)) = (P(x)∧(¬Q(x)))

Let's take another look.
Substitute (P(x) ⇒Q(x)) = (P(x) ∨ ¬Q(x)) to get:
¬(P(x) ⇒Q(x)) = ¬(P(x) ∨ ¬Q(x))

... but wait! Isn't that the negation of what you are saying? :eek:

I guess so.
 
I have to go right now, so can't reply in the next 24 hours.
 
rayne said:
Let P(x) be assertion “x is prime”, E(x) be “x is even”, and D(x, y) be “x divides y” (i.e., y/x is an integer). Consider the following statement:
R = (∀x ∈ Z)(P(x) ⇒ ((∃y ∈ Z)(E(y) ∧ D(x, y))))

Write the negation of R, and determine which statement is true, R or ¬R.

I tried, but I'm not sure if I got the correct answer:
¬R = (∃x ∈ Z)(P(x) ∧ (∀y ∈ Z)((¬E(y)) ∨ (¬D(x, y)))

It seems that ¬R is true.
Rayne, you are right on both counts.

I like Serena said:
Did you know that:
(P(x) ⇒Q(x)) = (P(x) ∨ ¬Q(x))
No, (P(x) ⇒ Q(x)) ⇔ (¬P(x) ∨ Q(x)).
 
  • #10
Evgeny.Makarov said:
Rayne, you are right on both counts.

Let's read what R says:
For every x in Z, if x is prime, then there is an y such that y is even and x divides y.
I believe this is true. Pick y=2x.

No, (P(x) ⇒ Q(x)) ⇔ (¬P(x) ∨ Q(x)).

Ah. My bad.
 
  • #11
I like Serena said:
Let's read what R says:
For every x in Z, if x is prime, then there is an y such that y is even and x divides y.
I believe this is true. Pick y=2x.
Yes, of course. I must have read $D(x,y)$ the other way. The negation is still constructed correctly, I believe.

Well, this thread has some unfortunate responses, doesn't it?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K