MHB What is the norm of a linear operator in $\mathscr{L}^p(0, \infty)$?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
The discussion focuses on finding the norm of the linear operator T defined on the space $\mathscr{L}^p(0, \infty)$, where T is given by the integral equation involving the function f. Participants are tasked with determining the operator's norm under the assumption that 1 < p < ∞. The space $\mathscr{L}^p(0,\infty)$ includes Lebesgue integrable functions with a finite p-norm. Despite the challenge, no responses were provided to the problem, and a solution is noted to be available below. The thread emphasizes the mathematical exploration of operator norms within this functional space.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Find the norm of the linear operator $T: \mathscr{L}^p(0, \infty) \to \mathscr{L}^p(0, \infty)$ defined by the equation

$$(Tf)(x) = \frac{1}{x}\int_0^x f(t)\, dt$$

Here it is assumed that $1 < p < \infty$.

Note: The space $\mathscr{L}^p(0,\infty)$ consists of all Lebesgue integrable functions $f : (0,\infty) \to \Bbb R$ such that $\|f\|_p < \infty$. For $p < \infty$, $\|f\|_p := \left(\int_0^\infty \lvert f(x)\rvert^p\, dx\right)^{1/p}$.
-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
The norm is $q := p/(p-1)$, the exponent conjugate to $p$. Let $f\in L^p(0,\infty)$, and let $r\in (0, 1/q)$ where $r$ is a constant to be determined. Writing $f(t) =t^{-r}[f(t)t^{r }]$ and applying Hölder's inequality, we obtain

$$\lvert Tf(x)\rvert^p \le (1 - r q)^{-p/q} x^{-1-rp} \int_0^x \lvert f(t)\rvert^{p} t^{rp}\, dt$$

Integrating over $(0, \infty)$ and changing the order of integration, we find

$$\int_0^\infty \lvert Tf(x)\rvert^p \le (1 - rq)^{-p/q}(rp)^{-1} \int_0^\infty \lvert f(t)\rvert^p\, dt$$

Hence

$$\|Tf\|_p \le (1 - rq)^{-1/q}(rp)^{-1/p}\|f\|_p$$

Choosing $r$ such that $1 - rq = rp$, i.e., $r = \frac1{pq}$ (since $\frac{1}{p} + \frac{1}{q} = 1$),

$$\|Tf\|_p \le (rp)^{-1/q - 1/p} \|f\|_p = q\|f\|_p$$

It follows that $\|T\|\le q$. To obtain $\|T\| = q$, we choose the function $f : (0, \infty) \to (0, \infty)$, $f(x) = x^{-1/p}1_{[1,R]}(x)$, where $R$ is scaled sufficiently large.