MHB What Is the Probability of Having Exactly k Boys in a Family of n Children?

  • Thread starter Thread starter evinda
  • Start date Start date
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

A couple gets $n$ children. At each birth, the probability to get a boy is $p$ (independent births). Which is the probability that exactly $k$ of the children are boys?

I have thought the following:

Let $X$ be the number of boys that the couple gets. Then the desired probality is

$P(X=k)=p^k \cdot (1-p)^{n-k}$

Am I right? (Thinking)
 
Physics news on Phys.org
Hey evinda!

Yes, that is correct. (Nod)
 
I like Serena said:
Hey evinda!

Yes, that is correct. (Nod)

Great! Thank you (Happy)
 
evinda said:
Hello! (Wave)

A couple gets $n$ children. At each birth, the probability to get a boy is $p$ (independent births). Which is the probability that exactly $k$ of the children are boys?

I have thought the following:

Let $X$ be the number of boys that the couple gets. Then the desired probality is

$P(X=k)=p^k \cdot (1-p)^{n-k}$

Am I right? (Thinking)
Hello,

Your answer should be $P(X=k)=\binom{n}{k}p^k (1-p)^{n-k}$
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top