What is the purpose and meaning of Pauli/sigma matrices

  • Context: Graduate 
  • Thread starter Thread starter mraptor
  • Start date Start date
  • Tags Tags
    Matrices
Click For Summary
SUMMARY

The discussion centers on the purpose and meaning of Pauli matrices in quantum mechanics, specifically their role in describing the transformation of spin-1/2 particles under rotations. The Pauli matrices, denoted as σ, serve as generators of rotations in spin space, allowing for the mathematical representation of state transformations when the coordinate system changes. The eigenvalues of the Pauli matrices correspond to measurable spin states, and their eigenvectors form the basis for spin-1/2 state vectors. Understanding these matrices is essential for analyzing quantum states and their measurements.

PREREQUISITES
  • Familiarity with quantum mechanics concepts, particularly spin-1/2 particles.
  • Understanding of Hermitian operators and their role in quantum measurements.
  • Knowledge of eigenvalue equations and their significance in quantum state analysis.
  • Basic grasp of linear algebra, particularly vector decomposition in Hilbert space.
NEXT STEPS
  • Study the mathematical properties of Pauli matrices and their applications in quantum mechanics.
  • Learn about the representation theory relevant to quantum states and operators.
  • Explore the concept of spinors and their role in quantum state transformations.
  • Investigate the relationship between Lie groups and quantum mechanics, particularly in the context of rotation groups.
USEFUL FOR

Quantum physicists, students of quantum mechanics, and anyone interested in the mathematical foundations of spin and quantum state transformations will benefit from this discussion.

mraptor
Messages
37
Reaction score
0
What is the purpose and meaning of Pauli/sigma matrices ?

What distinguish them from other Operators ?

thanx
 
Physics news on Phys.org
The Pauli matrices describe how spin-1/2 particles transform under rotations.

To give a concrete example of why they're needed, suppose you've got an electron that's in a "spin up" eigenstate about the z-axis, which we might write as (1,0) in vector notation. (First component is the coefficient of a spin-up eigenstate, second that of the spin-down, and their moduli squared must sum to one). Now rotate your co-ordinate system by 90 degrees about the y-axis, so that the x-axis is rotated into the z-axis. Clearly, your electron won't be in a z-spin eigenstate any more, becase the z-axis has changed. In fact, as you've just changed what you're calling the direction about which it has a definite spin, it will be in an x-spin eigenstate. So how do you describe this transformation mathematically- what operator turns a spin-z eigenstate into a spin-x one, and how would you work out the result if we'd picked a general rotation where the answer was less obvious? If you were dealing with some vector in space, like the momentum vector, you'd know exactly how to rotate it, but you're dealing with a two-component vector in the subset of Hilbert space concerned with "spin up" and "spin down".

The general answer is that, for spin-1/2 particles, you implement rotations on such two-component spin vectors (a,b) with the matrix e^{i\frac{1}{2}\vec{\theta}\cdot\vec{\sigma}}, where \vec{\theta} is a 3-vector pointing along the axis of rotation, whose modulus is the angle of rotation, and \vec{\sigma} is the vector of Pauli matrices, and the exponential of a matrix is defined by the power series. For really small (infinitesmal) angles, we can truncate this power series to just the leading order term, so that the Pauli matrices implement the infinitesmal rotation; we say they are the generators of the rotation.

Analagous constructions exist for particles of any spin; the general rule is that for a particle of spin j, you need a set of 3 (2j+1)x(2j+1) matrices that satisfy the same commutation relations as the Pauli matrices. Note that for j=1, 2j+1=3; the ordinary rotations of 3d space do the trick.

If you want to know more, any decent book on QM should do, but Landau+ Lifschitz has a really good treatment of spinors. If you really want to get into the maths to understand it properly, you need to learn about the idea of representation theory- I'd recommend "Groups, Representations and Physics" by Jones for explaining precisely what a representation actually is, but the most popular treatment, especially for Lie groups like the rotation group, is "Lie Algebras in particle physics" by Georgi.

Hope that helps.
 
Thanx a lot , I understood at least the first part ;)
Let me try to explain it with my words..
So in a sense i measure electron/s and find his spin.. but for whatever reason i have to let say rotate the system f.e. to take the second measurement or prepare the system for the something else..
I can use those matrices/operators to keep the correct answer.
i.e. keep the things in sync...
 
mraptor said:
What is the purpose and meaning of Pauli/sigma matrices ?

What distinguish them from other Operators ?

thanx

Every observable in quantum mechanics is represented by a Hermitian operator. Spin ½ is the observable represented by the Pauli spin matrices, one for each component. If we do an experiment where we measure the z-component, say, of the spin, then the eigenvalues of the spin operator (the Pauli spin matrix \sigma _z) are the possible results of the spin measurement. And its eigenvectors become the basis vectors in spin space; all spin ½ state vectors are written as the superposition of the eigenvectors.

In short, solving the eigenvalue equation for a Pauli spin matrix allows us to determine the possible results for a spin measurement and the probability distribution of those results. We do this for any quantum observable, but the calculations for spin ½ are the simplest to make since spin ½ space is only two-dimensional.

Best wishes
 
I am new to this field, which is far from intuitive for me! I want to make sure I understand what you're saying.

I think I understand that the quantum state vector depends on your choice of coordinate system. Suppose you're given a state vector |ψz> with respect to the "standard" (x, y, z) system. (I'm not sure whether this is left or right-handed.) We can decompose this vector as a linear combination of the eigenvectors (ez1, ez2) of the σz Pauli matrix:

|\psi_z \rangle = a_{z1} |e_{z1}\rangle + a_{z2} |e_{z2}\rangle = a_{z1} \left (\begin{array}{c}1\\0\end{array} \right) + a_{z2} \left (\begin{array}{c}0\\1\end{array} \right)

The spin-up probability when measured in the z-direction is then |az1|2, and the spin-down probability is |az1|2. Correct?

We also can decompose the same state into components of the σx eigenvectors

|\psi_z \rangle = a_{x1} |e_{x1}\rangle + a_{x2} |e_{x2}\rangle = \frac{1}{\sqrt 2}a_{x1} \left (\begin{array}{c}1\\1\end{array} \right) + \frac{1}{\sqrt 2}a_{x2} \left (\begin{array}{c}1\\-1\end{array} \right),

to obtain the probability |ax1|2 of a spin-up measurment in the x-direction. If we denote the Ux matrix to be

U_x = \frac{1}{\sqrt 2} \left ( \begin{array}{cc} 1 &amp; 1 \\ 1 &amp; -1 \end{array} \right )<br />,

then the "rotated" quantum state |ψx> becomes

|\psi_x \rangle = \left ( \begin{array}{c} a_{x1} \\ a_{x2} \end{array} \right ) = <br /> U_x^\dagger | \psi_z \rangle = e^{i \pi \sigma_y/4} |\psi_z \rangle.<br />

Am I on the right track?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K