What is the range of the function f(x) = √(x^2-x)/(x-|x|)?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The range of the function f(x) = √(x^2 - x) / (x - |x|) is determined by analyzing the behavior of the numerator and denominator. The numerator, √(x^2 - x), is defined for x ≥ 0. The denominator, (x - |x|), simplifies to -x for x ≥ 0, leading to f(x) being undefined for x = 0. Thus, the function is valid for x > 0, and the range is (0, ∞).

PREREQUISITES
  • Understanding of square root functions
  • Knowledge of absolute value properties
  • Familiarity with function analysis
  • Basic calculus concepts
NEXT STEPS
  • Study the properties of square root functions in detail
  • Learn about absolute value functions and their implications on domain and range
  • Explore function continuity and points of discontinuity
  • Investigate limits and asymptotic behavior of functions
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced function analysis and calculus concepts.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the range of the function of $f$, where $f(x)=\dfrac{\sqrt{x^2-x}}{x-|x|}$.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem of the week #105 -March 31st, 2014

Congratulations to the following members for their correct solutions:

1. MarkFL
2. lfdahl

Solution from MarkFL:
We see that the domain of $f$ is $(-\infty,0)$.

We also find:

$$f'(x)=\frac{1}{2\sqrt{x^2-x}(x-|x|)}<0$$ for all $x$ in the domain, hence:

The upper bound of $f$ is:

$$\lim_{x\to-\infty}f(x)=-\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{x^2}}}{1+1}=-\frac{1}{2}$$

The lower bound of $f$ is:

$$\lim_{x\to0^{-}}f(x)=-\lim_{x\to0^{-}}\sqrt{\frac{1}{4}+\frac{1}{4x}}=-\infty$$

Thus, the range of $f$ is $$\left(-\infty,-\frac{1}{2} \right)$$

Solution from lfdahl:
The function: $f(x)=\frac{\sqrt{x^2-x}}{x-\left | x \right |}$ has the domain: $\mathbb{R_{-}} =\: \: \: \: ]-\infty ;0[$ because of the denominator being zero for $x \geq 0$. (Furthermore: $\sqrt{x^2-x}$ is only valid for $x\geq1$)
$f$ is strictly monotonic decreasing in its domain, because:

\[f'(x)= \frac{\mathrm{d} }{\mathrm{d} x}\frac{\sqrt{x^2-x}}{2x}=\frac{x}{4x^2\sqrt{x^2-x}} <0\; \; for \;\;x<0\]

I will check what happens when $x$ is close to zero using L’Hospital´s rule:
\[\lim_{x\rightarrow 0^-}f(x)=\lim_{x\rightarrow 0^-}\frac{\sqrt{x^2-x}}{x-\left | x \right |}= \lim_{x\rightarrow 0^-}\frac{\sqrt{x^2-x}}{2x}=\lim_{x\rightarrow 0^-}\frac{2x-1}{4\sqrt{x^2-x}}= -\infty\]
I need also to check what happens when $x \rightarrow -\infty$:
\[\lim_{x\rightarrow -\infty }f(x)=\lim_{x\rightarrow -\infty }\frac{\sqrt{x^2-x}}{x-\left | x \right |}= \lim_{x\rightarrow -\infty }-\frac{\sqrt{x^2-x}}{2\left | x \right |} \\\\ =\lim_{x\rightarrow -\infty }-\frac{\left | x \right |\sqrt{1-\frac{1}{x}}}{2\left | x \right |} = \lim_{x\rightarrow -\infty }-\frac{1}{2}\sqrt{1-\frac{1}{x}}=-\frac{1}{2}\]

Thus the range of $f$ is $]-\infty;-\frac{1}{2}[$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K