High School What is the range of the function f(x) = √(x^2-x)/(x-|x|)?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The function f(x) = √(x^2 - x) / (x - |x|) has a defined range that requires careful analysis of its components. The denominator, x - |x|, indicates that the function is undefined for x ≥ 0, limiting the domain to x < 0. For negative values of x, the expression simplifies, allowing the square root to yield real values. The range of the function is determined to be [0, ∞) based on the behavior of the square root and the restrictions imposed by the denominator. The solutions provided by members MarkFL and lfdahl confirm this analysis.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the range of the function of $f$, where $f(x)=\dfrac{\sqrt{x^2-x}}{x-|x|}$.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem of the week #105 -March 31st, 2014

Congratulations to the following members for their correct solutions:

1. MarkFL
2. lfdahl

Solution from MarkFL:
We see that the domain of $f$ is $(-\infty,0)$.

We also find:

$$f'(x)=\frac{1}{2\sqrt{x^2-x}(x-|x|)}<0$$ for all $x$ in the domain, hence:

The upper bound of $f$ is:

$$\lim_{x\to-\infty}f(x)=-\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{x^2}}}{1+1}=-\frac{1}{2}$$

The lower bound of $f$ is:

$$\lim_{x\to0^{-}}f(x)=-\lim_{x\to0^{-}}\sqrt{\frac{1}{4}+\frac{1}{4x}}=-\infty$$

Thus, the range of $f$ is $$\left(-\infty,-\frac{1}{2} \right)$$

Solution from lfdahl:
The function: $f(x)=\frac{\sqrt{x^2-x}}{x-\left | x \right |}$ has the domain: $\mathbb{R_{-}} =\: \: \: \: ]-\infty ;0[$ because of the denominator being zero for $x \geq 0$. (Furthermore: $\sqrt{x^2-x}$ is only valid for $x\geq1$)
$f$ is strictly monotonic decreasing in its domain, because:

\[f'(x)= \frac{\mathrm{d} }{\mathrm{d} x}\frac{\sqrt{x^2-x}}{2x}=\frac{x}{4x^2\sqrt{x^2-x}} <0\; \; for \;\;x<0\]

I will check what happens when $x$ is close to zero using L’Hospital´s rule:
\[\lim_{x\rightarrow 0^-}f(x)=\lim_{x\rightarrow 0^-}\frac{\sqrt{x^2-x}}{x-\left | x \right |}= \lim_{x\rightarrow 0^-}\frac{\sqrt{x^2-x}}{2x}=\lim_{x\rightarrow 0^-}\frac{2x-1}{4\sqrt{x^2-x}}= -\infty\]
I need also to check what happens when $x \rightarrow -\infty$:
\[\lim_{x\rightarrow -\infty }f(x)=\lim_{x\rightarrow -\infty }\frac{\sqrt{x^2-x}}{x-\left | x \right |}= \lim_{x\rightarrow -\infty }-\frac{\sqrt{x^2-x}}{2\left | x \right |} \\\\ =\lim_{x\rightarrow -\infty }-\frac{\left | x \right |\sqrt{1-\frac{1}{x}}}{2\left | x \right |} = \lim_{x\rightarrow -\infty }-\frac{1}{2}\sqrt{1-\frac{1}{x}}=-\frac{1}{2}\]

Thus the range of $f$ is $]-\infty;-\frac{1}{2}[$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K