Petrus
- 702
- 0
Hello MHB,
calculate $$\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}$$ in the form $$a+ib$$
progress:
I start to calculate argument and get it to $$r=1$$ (argument)
then $$\cos\theta=\frac{1}{2} \ sin\theta=\frac{\sqrt{3}}{2}$$ we se it's in first quadrant( where x and y is positive)
$$1*e^{i\frac{100\pi}{3}}$$
notice that we can always take away 2pi so we can simplify that to
$$1*e^{i\frac{\pi}{3}}$$
$$1*e^{i\frac{\pi}{3}}=\cos(\frac{\pi}{3}) + i \sin (\frac{\pi}{3}) = \frac{1}{2}+i\frac{\sqrt{3}}{2}$$
but the facit says $$\frac{-1}{2}-i\frac{\sqrt{3}}{2}$$
Regards,
calculate $$\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}$$ in the form $$a+ib$$
progress:
I start to calculate argument and get it to $$r=1$$ (argument)
then $$\cos\theta=\frac{1}{2} \ sin\theta=\frac{\sqrt{3}}{2}$$ we se it's in first quadrant( where x and y is positive)
$$1*e^{i\frac{100\pi}{3}}$$
notice that we can always take away 2pi so we can simplify that to
$$1*e^{i\frac{\pi}{3}}$$
$$1*e^{i\frac{\pi}{3}}=\cos(\frac{\pi}{3}) + i \sin (\frac{\pi}{3}) = \frac{1}{2}+i\frac{\sqrt{3}}{2}$$
but the facit says $$\frac{-1}{2}-i\frac{\sqrt{3}}{2}$$
Regards,