What is the Result of Raising a Complex Number to a Power?

  • Context: MHB 
  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Form Rectangular
Click For Summary
SUMMARY

The discussion focuses on calculating the expression $$\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}$$ using polar coordinates and de Moivre's theorem. The initial calculations incorrectly identified the angle as $$\frac{\pi}{3}$$ instead of the correct angle $$\frac{4\pi}{3}$$. The correct result, derived from applying de Moivre's theorem, is $$-\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)$$, confirming that the expression evaluates to $$\frac{-1}{2}-i\frac{\sqrt{3}}{2}$$.

PREREQUISITES
  • Understanding of complex numbers and their polar representation
  • Familiarity with de Moivre's theorem
  • Knowledge of trigonometric functions, specifically sine and cosine
  • Ability to perform modular arithmetic with angles
NEXT STEPS
  • Study the application of de Moivre's theorem in complex number calculations
  • Learn about polar coordinates and their conversion to rectangular form
  • Explore advanced topics in complex analysis, such as Euler's formula
  • Practice modular arithmetic with angles in trigonometric contexts
USEFUL FOR

Mathematicians, physics students, and anyone interested in complex number theory and its applications in higher mathematics.

Petrus
Messages
702
Reaction score
0
Hello MHB,
calculate $$\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}$$ in the form $$a+ib$$

progress:
I start to calculate argument and get it to $$r=1$$ (argument)
then $$\cos\theta=\frac{1}{2} \ sin\theta=\frac{\sqrt{3}}{2}$$ we se it's in first quadrant( where x and y is positive)
$$1*e^{i\frac{100\pi}{3}}$$
notice that we can always take away 2pi so we can simplify that to
$$1*e^{i\frac{\pi}{3}}$$
$$1*e^{i\frac{\pi}{3}}=\cos(\frac{\pi}{3}) + i \sin (\frac{\pi}{3}) = \frac{1}{2}+i\frac{\sqrt{3}}{2}$$
but the facit says $$\frac{-1}{2}-i\frac{\sqrt{3}}{2}$$

Regards,

 
Physics news on Phys.org
Petrus said:
Hello MHB,
calculate $$\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}$$ in the form $$a+ib$$

progress:
I start to calculate argument and get it to $$r=1$$ (argument)
then $$\cos\theta=\frac{1}{2} \ sin\theta=\frac{\sqrt{3}}{2}$$ we se it's in first quadrant( where x and y is positive)
$$1*e^{i\frac{100\pi}{3}}$$
notice that we can always take away 2pi so we can simplify that to
$$1*e^{i\frac{\pi}{3}}$$
$$1*e^{i\frac{\pi}{3}}=\cos(\frac{\pi}{3}) + i \sin (\frac{\pi}{3}) = \frac{1}{2}+i\frac{\sqrt{3}}{2}$$
but the facit says $$\frac{-1}{2}-i\frac{\sqrt{3}}{2}$$

Regards,

Hey Petrus!

What is $$\frac {100\pi}{3} \pmod{2\pi}$$?
 
I like Serena said:
Hey Petrus!

What is $$\frac {100\pi}{3} \pmod{2\pi}$$?
$$\frac{4}{3}$$

- - - Updated - - -

Thanks I like Serena I see what I did wrong :)

Regards,
 
Petrus said:
$$\frac{4}{3}$$

That should be $$\frac{4\pi}{3}$$. (Yeah, I know, I'm a nitpicker.)

So what's $$\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$$?
 
I like Serena said:
(Yeah, I know, I'm a nitpicker
nitpicker or not, I am grateful for the fast responed!

Regards,
 
If I were to work the problem, I would write:

$$\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}= \left(\cos\left(\frac{\pi}{3}+2k\pi \right)+i\sin\left(\frac{\pi}{3}+2k\pi \right) \right)^{100}$$

Now applying de Moivre's theorem we have:

$$\cos\left(\frac{100\pi}{3}+200k\pi \right)+i\sin\left(\frac{100\pi}{3}+200k\pi \right)=\cos\left(\frac{4\pi}{3}+232k\pi \right)+i\sin\left(\frac{4\pi}{3}+232k\pi \right)= -\left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)$$
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K