MHB What is the solution (rational function/interval table)?

  • Thread starter Thread starter eleventhxhour
  • Start date Start date
  • Tags Tags
    Table
Click For Summary
The discussion revolves around solving the inequality |x/(x-2)| < 5. Participants explore methods to eliminate the absolute value, including squaring both sides and splitting the inequality into two separate cases. Confusion arises regarding the correct intervals for x, with one participant obtaining x < 5/3 and x > 2, while the book states x < 5/3 and x > 5/2. The importance of understanding the sign of terms when cross-multiplying in inequalities is emphasized. Ultimately, the correct solution involves ensuring both conditions for x are satisfied, leading to the final intervals.
eleventhxhour
Messages
73
Reaction score
0
What is the solution of |x/(x-2)| < 5 ?

So, I did this the usual way of moving over the 5 to the left side and then cross multiplying and simplifying etc. However, I keep getting the wrong answer. I got x < 5/3 and x > 2, while the answer in the book says that it's x< 5/3 and x > 5/2.

What did I do wrong? I'm assuming it has something to do with the absolute value sign, but I'm not sure how to figure it out...
 
Mathematics news on Phys.org
What do yo mean with cross multiplying? I'm not familiar with this.

I would solve it this way: to get rid of the absolut value signs you can square both sides, that is

$$\left | \frac{x}{x-2}\right | < 5 \Rightarrow \frac{x^2}{(x-2)^2} < 25$$
Solving this inequality gives the desired result.
 
Another way to get rid of the absolute value:
[math]\left | \frac{x}{x - 2} \right | < 5[/math]

splits into the two inequalities:
[math]\frac{x}{x - 2} < 5[/math]

and
[math]-\frac{x}{x - 2} < 5[/math]

and solve them separately.

The trouble with cross multiplying when using inequalities is that we need to know the sign of what we are multiplying by. For example -4/x < 1 when x is positive, but -4/x > 1 when x is negative. The same thing will occur for the x - 2 term.

-Dan
 
topsquark said:
Another way to get rid of the absolute value:
[math]\left | \frac{x}{x - 2} \right | < 5[/math]

splits into the two inequalities:
[math]\frac{x}{x - 2} < 5[/math]

and
[math]-\frac{x}{x - 2} < 5[/math]

and solve them separately.

The trouble with cross multiplying when using inequalities is that we need to know the sign of what we are multiplying by. For example -4/x < 1 when x is positive, but -4/x > 1 when x is negative. The same thing will occur for the x - 2 term.

-Dan

So I solved each of those and for the first one I got that it's negative at x<2 and x>5/2. For the second I got that it's negative at x<5/3 and x>2. Is this correct? The book had a different answer (x<5/3 and x>5/2).
 
eleventhxhour said:
So I solved each of those and for the first one I got that it's negative at x<2 and x>5/2. For the second I got that it's negative at x<5/3 and x>2. Is this correct? The book had a different answer (x<5/3 and x>5/2).
All of this has to come together. Take a look first at the lower limits of x. We have x < 2 and x < 5/3. In order for both of these to be true then we require that x < 5/3, because 5/3 is smaller than 2...both conditions are satisfied by this. See if you can do the upper limits of x based on a similar argument.

-Dan
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 51 ·
2
Replies
51
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K