MHB What is the solution (rational function/interval table)?

  • Thread starter Thread starter eleventhxhour
  • Start date Start date
  • Tags Tags
    Table
Click For Summary
SUMMARY

The solution to the inequality |x/(x-2)| < 5 involves breaking it down into two separate inequalities: x/(x-2) < 5 and -x/(x-2) < 5. The correct intervals for the solution are x < 5/3 and x > 5/2, as confirmed by multiple participants in the discussion. The confusion arose from improper handling of the absolute value and cross-multiplication, which can lead to incorrect conclusions if the sign of the terms is not considered. Properly analyzing the critical points and intervals is essential for arriving at the correct solution.

PREREQUISITES
  • Understanding of absolute value inequalities
  • Familiarity with rational functions
  • Knowledge of solving inequalities
  • Ability to analyze critical points on a number line
NEXT STEPS
  • Learn how to solve absolute value inequalities systematically
  • Study the properties of rational functions and their graphs
  • Explore techniques for analyzing critical points in inequalities
  • Review the rules of cross-multiplication in the context of inequalities
USEFUL FOR

Students studying algebra, educators teaching inequality solutions, and anyone looking to improve their skills in solving rational function inequalities.

eleventhxhour
Messages
73
Reaction score
0
What is the solution of |x/(x-2)| < 5 ?

So, I did this the usual way of moving over the 5 to the left side and then cross multiplying and simplifying etc. However, I keep getting the wrong answer. I got x < 5/3 and x > 2, while the answer in the book says that it's x< 5/3 and x > 5/2.

What did I do wrong? I'm assuming it has something to do with the absolute value sign, but I'm not sure how to figure it out...
 
Mathematics news on Phys.org
What do yo mean with cross multiplying? I'm not familiar with this.

I would solve it this way: to get rid of the absolut value signs you can square both sides, that is

$$\left | \frac{x}{x-2}\right | < 5 \Rightarrow \frac{x^2}{(x-2)^2} < 25$$
Solving this inequality gives the desired result.
 
Another way to get rid of the absolute value:
[math]\left | \frac{x}{x - 2} \right | < 5[/math]

splits into the two inequalities:
[math]\frac{x}{x - 2} < 5[/math]

and
[math]-\frac{x}{x - 2} < 5[/math]

and solve them separately.

The trouble with cross multiplying when using inequalities is that we need to know the sign of what we are multiplying by. For example -4/x < 1 when x is positive, but -4/x > 1 when x is negative. The same thing will occur for the x - 2 term.

-Dan
 
topsquark said:
Another way to get rid of the absolute value:
[math]\left | \frac{x}{x - 2} \right | < 5[/math]

splits into the two inequalities:
[math]\frac{x}{x - 2} < 5[/math]

and
[math]-\frac{x}{x - 2} < 5[/math]

and solve them separately.

The trouble with cross multiplying when using inequalities is that we need to know the sign of what we are multiplying by. For example -4/x < 1 when x is positive, but -4/x > 1 when x is negative. The same thing will occur for the x - 2 term.

-Dan

So I solved each of those and for the first one I got that it's negative at x<2 and x>5/2. For the second I got that it's negative at x<5/3 and x>2. Is this correct? The book had a different answer (x<5/3 and x>5/2).
 
eleventhxhour said:
So I solved each of those and for the first one I got that it's negative at x<2 and x>5/2. For the second I got that it's negative at x<5/3 and x>2. Is this correct? The book had a different answer (x<5/3 and x>5/2).
All of this has to come together. Take a look first at the lower limits of x. We have x < 2 and x < 5/3. In order for both of these to be true then we require that x < 5/3, because 5/3 is smaller than 2...both conditions are satisfied by this. See if you can do the upper limits of x based on a similar argument.

-Dan
 

Similar threads

  • · Replies 51 ·
2
Replies
51
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K