MHB What is the solution to a Putnam Mathematical Competition problem from 1995?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The discussion revolves around evaluating the expression $\sqrt[8]{2207-\dfrac{1}{2207-\dfrac{1}{2207-\cdots}}$, which is a problem from the 1995 Putnam Mathematical Competition. Participants are encouraged to express their answers in the form $\dfrac{a+b\sqrt{c}}{d}$, where a, b, c, and d are integers. Correct solutions have been provided by users kiwi and kaliprasad, with kiwi sharing a detailed solution. The thread emphasizes the importance of following the guidelines for the Problem of the Week. The focus remains on solving this mathematical challenge effectively.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Evaluate $\displaystyle\sqrt[8]{2207-\dfrac{1}{2207-\dfrac{1}{2207-\cdots}}}$. Express your answer in the form $\dfrac{a+b\sqrt{c}}{d}$, where $a,b,c,d$ are integers.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 218 - May 31, 2016

This was Problem B-4 in the 1995 William Lowell Putnam Mathematical Competition.

Congratulations to kiwi and kaliprasad for their correct answers. kiwi's solution follows:

\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\cdots}}}Let \(k=2207-\frac{1}{2207-\frac{1}{2207-\cdots}}=2207-\frac{1}{k}\)

So \(k^2-2207k+1=0\)

So \(k=\frac{2207 \pm \sqrt{2207^2-4}}{2}=\frac{2207 \pm \sqrt{987^2.5}}{2}=\frac{2207 \pm 987\sqrt{5}}{2}\)

Now assume:
\(\sqrt[2]{k}=\sqrt[2]{\frac{2207 \pm 987\sqrt{5}}{2}}=\frac{a+b\sqrt{5}}{2} \)

So
\(2(2207 \pm 987\sqrt{5})= ({a+b\sqrt{5})^2= (a^2+2ab\sqrt{5}+5b^2})\)

So \(a^2+5b^2=2 \times 2207\) and \(2ab=\pm 2 \times 987\)

Now \(987=3\times7\times47\) so a and b are each 3,7,47,21,141 or 329. By trial and error a=47 and b=21. Giving:
\(\sqrt[2]{k}=\frac{47+21\sqrt{5}}{2} \)

Now resetting a and b we write:
\(\sqrt[4]{k}=\sqrt[2]{\frac{47+21\sqrt{5}}{2}}=\frac{a+b\sqrt{5}}{2} \)

So
\(2(47+21\sqrt{5})=({a+b\sqrt{5})^2=(a^2+2ab\sqrt{5}+5b^2})\)

So \(a^2+5b^2= 2 \times 47\) and \(2ab=\pm 2 \times 21\)

Which has solutions a=7, b=3 so:

\(\sqrt[4]{k}=\frac{7+3\sqrt{5}}{2} \)

Once again resetting a and b we write:
\(\sqrt[8]{k}=\sqrt[2]{\frac{7+3\sqrt{5}}{2}}=\frac{a+b\sqrt{5}}{2} \)

So
\(2(7+3\sqrt{5})= ({a+b\sqrt{5})^2= (a^2+2ab\sqrt{5}+5b^2})\)

So \(a^2+5b^2=2 \times 7\) and \(2ab=\pm 2 \times 3\)

Which has solutions a=3, b=1 so:

\(\sqrt[8]{k}=\frac{3+\sqrt{5}}{2} \)

or

\(\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\cdots}}}=\frac{3+\sqrt{5}}{2} \)
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K