What is the solution to Problem of the Week #21?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The discussion addresses Problem of the Week #21, which involves demonstrating that if a function \( f \) belongs to both \( L_{\mu}^r(X) \) and \( L_{\mu}^s(X) \) for \( 0 PREREQUISITES

  • Understanding of measure spaces, specifically \( (X,\mu) \)
  • Familiarity with \( L^p \) spaces and their properties
  • Knowledge of Hölder's inequality and its applications
  • Basic concepts of functional analysis
NEXT STEPS
  • Study the properties of \( L^p \) spaces, focusing on their completeness and norm definitions
  • Learn about Hölder's inequality and its implications in measure theory
  • Explore the relationships between different \( L^p \) spaces and their embeddings
  • Investigate examples of functions in \( L_{\mu}^r(X) \) and \( L_{\mu}^s(X) \) to see practical applications of the theorem
USEFUL FOR

Mathematicians, students of functional analysis, and researchers in measure theory who are looking to deepen their understanding of \( L^p \) spaces and their interrelations.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Suppose that $(X,\mu)$ is a measure space. For $0<r<p<s<\infty$, assume that $f\in L_{\mu}^r(X)\cap L_{\mu}^s(X)$. Show that $f\in L_{\mu}^p(X)$ and that
\[\|f\|_{L_{\mu}^p(X)} \leq \|f\|_{L_{\mu}^r(X)}^{\theta}\|f\|_{L_{\mu}^s(X)}^{1-\theta}\qquad\text{for}\qquad \frac{1}{p}=\frac{\theta}{r}+\frac{1-\theta}{s}.\]

-----

Here's a hint for this week's question.

Use the generalized Hölder inequality for the second half of the problem.

 
Physics news on Phys.org
No one answered this week's problem. Here's my solution.

Proof: Since $r<p<s$, we have the containment $L_{\mu}^r(X)\subset L_{\mu}^p(X)\subset L_{\mu}^s(X)$. Furthermore, since $f\in L_{\mu}^r(X)\cap L_{\mu}^s(X)$, we must also have that $f\in L_{\mu}^p(X)$.

Now, if we let $\theta=0$, we get the inequality $\|f\|_{L_{\mu}^p(X)}\leq \|f\|_{L_{\mu}^s(X)}$ and if $\theta=1$, we have $\|f\|_{L_{\mu}^p(X)}\leq \|f\|_{L_{\mu}^r(X)}$, which makes sense given how $f$ lies in each of these spaces. Now, suppose that $\theta\neq 0,1$. To prove the inequality, we need to use the general Hölder inequality
\[\|fg\|_{L^r}\leq \|f\|_{L^p}\|g\|_{L^q}\quad\text{for}\quad \frac{1}{r}=\frac{1}{p}+\frac{1}{q}.\]
In our situation, let $F$ and $G$ be functions such that $FG=f$, i.e. $F=f^{\theta}$ and $G=f^{1-\theta}$. Then by the general Hölder inequality with
\[\frac{1}{p}=\frac{\theta}{r}+\frac{1-\theta}{s}=\frac{1}{r/\theta}+\frac{1}{s/(1-\theta)}\]
we get
\[\begin{aligned}\|f\|_{L_{\mu}^p(X)} &= \|FG\|_{L_{\mu}^p(X)}\\ &\leq \|F\|_{L_{\mu}^{r/\theta}(X)} \|G\|_{L_{\mu}^{s/(1-\theta)}(X)}\\ &= \left(\int_E |F|^{r/\theta}\,d\mu\right)^{\theta/r} \left(\int_E |G|^{s/(1-\theta)}\,d\mu\right)^{(1-\theta)/s} \\ &= \left(\int_E |f|^{\theta(r/\theta)}\,d\mu\right)^{\theta/r} \left(\int_E |f|^{(1-\theta)[s/(1-\theta)]}\,d\mu\right)^{(1-\theta)/s}\\ &= \left[\left(\int_E |f|^r\,d\mu\right)^{1/r}\right]^{\theta} \left[\left(\int_E |f|^s\,d\mu\right)^{1/s}\right]^{1-\theta}\\ &=\|f\|_{L_{\mu}^r(X)}^{\theta}\|g\|_{L_{\mu}^s(X)}^{1-\theta}\end{aligned}\]

Therefore, $\|f\|_{L_{\mu}^p(X)}\leq \|f\|_{L_{\mu}^r(X)}^{\theta}\|f\|_{L_{\mu}^s(X)}^{1-\theta}$. Q.E.D.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
979
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K