MHB What is the solution to Problem of the Week #21?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Suppose that $(X,\mu)$ is a measure space. For $0<r<p<s<\infty$, assume that $f\in L_{\mu}^r(X)\cap L_{\mu}^s(X)$. Show that $f\in L_{\mu}^p(X)$ and that
\[\|f\|_{L_{\mu}^p(X)} \leq \|f\|_{L_{\mu}^r(X)}^{\theta}\|f\|_{L_{\mu}^s(X)}^{1-\theta}\qquad\text{for}\qquad \frac{1}{p}=\frac{\theta}{r}+\frac{1-\theta}{s}.\]

-----

Here's a hint for this week's question.

Use the generalized Hölder inequality for the second half of the problem.

 
Physics news on Phys.org
No one answered this week's problem. Here's my solution.

Proof: Since $r<p<s$, we have the containment $L_{\mu}^r(X)\subset L_{\mu}^p(X)\subset L_{\mu}^s(X)$. Furthermore, since $f\in L_{\mu}^r(X)\cap L_{\mu}^s(X)$, we must also have that $f\in L_{\mu}^p(X)$.

Now, if we let $\theta=0$, we get the inequality $\|f\|_{L_{\mu}^p(X)}\leq \|f\|_{L_{\mu}^s(X)}$ and if $\theta=1$, we have $\|f\|_{L_{\mu}^p(X)}\leq \|f\|_{L_{\mu}^r(X)}$, which makes sense given how $f$ lies in each of these spaces. Now, suppose that $\theta\neq 0,1$. To prove the inequality, we need to use the general Hölder inequality
\[\|fg\|_{L^r}\leq \|f\|_{L^p}\|g\|_{L^q}\quad\text{for}\quad \frac{1}{r}=\frac{1}{p}+\frac{1}{q}.\]
In our situation, let $F$ and $G$ be functions such that $FG=f$, i.e. $F=f^{\theta}$ and $G=f^{1-\theta}$. Then by the general Hölder inequality with
\[\frac{1}{p}=\frac{\theta}{r}+\frac{1-\theta}{s}=\frac{1}{r/\theta}+\frac{1}{s/(1-\theta)}\]
we get
\[\begin{aligned}\|f\|_{L_{\mu}^p(X)} &= \|FG\|_{L_{\mu}^p(X)}\\ &\leq \|F\|_{L_{\mu}^{r/\theta}(X)} \|G\|_{L_{\mu}^{s/(1-\theta)}(X)}\\ &= \left(\int_E |F|^{r/\theta}\,d\mu\right)^{\theta/r} \left(\int_E |G|^{s/(1-\theta)}\,d\mu\right)^{(1-\theta)/s} \\ &= \left(\int_E |f|^{\theta(r/\theta)}\,d\mu\right)^{\theta/r} \left(\int_E |f|^{(1-\theta)[s/(1-\theta)]}\,d\mu\right)^{(1-\theta)/s}\\ &= \left[\left(\int_E |f|^r\,d\mu\right)^{1/r}\right]^{\theta} \left[\left(\int_E |f|^s\,d\mu\right)^{1/s}\right]^{1-\theta}\\ &=\|f\|_{L_{\mu}^r(X)}^{\theta}\|g\|_{L_{\mu}^s(X)}^{1-\theta}\end{aligned}\]

Therefore, $\|f\|_{L_{\mu}^p(X)}\leq \|f\|_{L_{\mu}^r(X)}^{\theta}\|f\|_{L_{\mu}^s(X)}^{1-\theta}$. Q.E.D.
 
Back
Top