MHB What is the sum of polynomial zeros?

  • Thread starter Thread starter Amad27
  • Start date Start date
  • Tags Tags
    Polynomial Sum
AI Thread Summary
The discussion revolves around finding the sum of polynomial zeros for the polynomial P(x) = x^3 - ax^2 + bx - 65, where a, b, r, and s are nonzero integers. Using Vieta's Formulas, the relationship between a, b, r, s, and k (the other real zero) is established, leading to several cases based on the values of r^2 + s^2. The calculations show that the correct total for the sum of a across valid cases is 80, after eliminating invalid combinations. The thread also notes a forum categorization error, emphasizing the importance of posting in the appropriate section for clarity and organization.
Amad27
Messages
409
Reaction score
1
There are nonzero integers $a$, $b$, $r$, and $s$ such that the complex number $r+si$ is a zero of the polynomial $P(x) = x^3 - ax^2 + bx - 65$. For each possible combination of $a$ and $b$, let $p_{a,b}$ be the sum of the zeroes of $P(x)$. Find the sum of the $p_{a,b}$'s for all possible combinations of $a$ and $b$.

From Vieta's Formulas, I got:

$a=2r+k$
$b=2rk+r^2+s^2$
$65=k(r^2+s^2)$

Where $k$ is the other real zero.

Then I split it into several cases: $r^2 + s^2 = 1, 5, 13, 65$ then:

For case 1: $r = \{2, -2, 1, -1 \}$

$\sum a = 2(\sum r) + k \implies a = 13$

Then for case 2: $r^2 + s^2 = 13$, it is that,

$\sum a = 2(\sum r) + k \implies a = 5$

Case 3:

$\sum a = 2(\sum r) + k \implies a = 65$

Case 4:

$\sum a = 2(\sum r) + k \implies a = 1$

$$\sum a = 1 + 65 + 5 + 13 = 84$$

The correct answer is $80$, why?
 
Mathematics news on Phys.org
Hi Olok,

Yes, the problem actually asked us to find the value $\sum a$.

You're definitely in the right track when you considered different cases for $r^2 + s^2$ and $k$ since we got $k(r^2+s^2)=65=1(65)=(65)(1)=5(13)=13(5)$.

But you must bear in mind that:

1. The question told us $a,\,b,\,r,\,s$ are nonzero integers, here, we could cross out the possibility that $k(r^2+s^2)=(65)(1)$ since $r^2+s^2\ne 1$.

2. When we're dealing with the squares, such as in this instance and take for example when we have $k(r^2+s^2)=(5)(13)=5(2^2+3^2)=5((-2)^2+(-3)^2)$, the target expression $a=2r+k$ is equivalent to $2k$ since the sum of both the values of $r$ equals zero:

$a=2r+k=2(2)+5+2(-2)+5=2(5)$

Therefore, we only need to consider all the possible positive values for $r$ to determine the corresponding $k$ and then multiply $k$ by 2 to get the answer.

And note that we have:

$k(r^2+s^2)=(1)(65)=1(1^2+8^2)=1(8^2+1^2)=1(4^2+7^2)=1(7^2+4^2)$

$k(r^2+s^2)=(5)(13)=5(2^2+3^2)=5(3^2+2^2)$

$k(r^2+s^2)=(13)(5)=13(1^2+2^2)=5(2^2+1^2)$

Therefore,

$\sum a = 2(4(1)+2(5)+2(13))=2(40)=80$

Edit: This thread is previously posted in the Pre-Calculus forum when it should be in the Pre-Algebra and Algebra forum, I have since moved it here, and we hope the OP will take care of which the forum is best suit for the topic in the future as this makes MHB a more organized and thus a more useful place for everyone. Thank you.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top