MHB What is the sum of polynomial zeros?

  • Thread starter Thread starter Amad27
  • Start date Start date
  • Tags Tags
    Polynomial Sum
Click For Summary
The discussion revolves around finding the sum of polynomial zeros for the polynomial P(x) = x^3 - ax^2 + bx - 65, where a, b, r, and s are nonzero integers. Using Vieta's Formulas, the relationship between a, b, r, s, and k (the other real zero) is established, leading to several cases based on the values of r^2 + s^2. The calculations show that the correct total for the sum of a across valid cases is 80, after eliminating invalid combinations. The thread also notes a forum categorization error, emphasizing the importance of posting in the appropriate section for clarity and organization.
Amad27
Messages
409
Reaction score
1
There are nonzero integers $a$, $b$, $r$, and $s$ such that the complex number $r+si$ is a zero of the polynomial $P(x) = x^3 - ax^2 + bx - 65$. For each possible combination of $a$ and $b$, let $p_{a,b}$ be the sum of the zeroes of $P(x)$. Find the sum of the $p_{a,b}$'s for all possible combinations of $a$ and $b$.

From Vieta's Formulas, I got:

$a=2r+k$
$b=2rk+r^2+s^2$
$65=k(r^2+s^2)$

Where $k$ is the other real zero.

Then I split it into several cases: $r^2 + s^2 = 1, 5, 13, 65$ then:

For case 1: $r = \{2, -2, 1, -1 \}$

$\sum a = 2(\sum r) + k \implies a = 13$

Then for case 2: $r^2 + s^2 = 13$, it is that,

$\sum a = 2(\sum r) + k \implies a = 5$

Case 3:

$\sum a = 2(\sum r) + k \implies a = 65$

Case 4:

$\sum a = 2(\sum r) + k \implies a = 1$

$$\sum a = 1 + 65 + 5 + 13 = 84$$

The correct answer is $80$, why?
 
Mathematics news on Phys.org
Hi Olok,

Yes, the problem actually asked us to find the value $\sum a$.

You're definitely in the right track when you considered different cases for $r^2 + s^2$ and $k$ since we got $k(r^2+s^2)=65=1(65)=(65)(1)=5(13)=13(5)$.

But you must bear in mind that:

1. The question told us $a,\,b,\,r,\,s$ are nonzero integers, here, we could cross out the possibility that $k(r^2+s^2)=(65)(1)$ since $r^2+s^2\ne 1$.

2. When we're dealing with the squares, such as in this instance and take for example when we have $k(r^2+s^2)=(5)(13)=5(2^2+3^2)=5((-2)^2+(-3)^2)$, the target expression $a=2r+k$ is equivalent to $2k$ since the sum of both the values of $r$ equals zero:

$a=2r+k=2(2)+5+2(-2)+5=2(5)$

Therefore, we only need to consider all the possible positive values for $r$ to determine the corresponding $k$ and then multiply $k$ by 2 to get the answer.

And note that we have:

$k(r^2+s^2)=(1)(65)=1(1^2+8^2)=1(8^2+1^2)=1(4^2+7^2)=1(7^2+4^2)$

$k(r^2+s^2)=(5)(13)=5(2^2+3^2)=5(3^2+2^2)$

$k(r^2+s^2)=(13)(5)=13(1^2+2^2)=5(2^2+1^2)$

Therefore,

$\sum a = 2(4(1)+2(5)+2(13))=2(40)=80$

Edit: This thread is previously posted in the Pre-Calculus forum when it should be in the Pre-Algebra and Algebra forum, I have since moved it here, and we hope the OP will take care of which the forum is best suit for the topic in the future as this makes MHB a more organized and thus a more useful place for everyone. Thank you.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 68 ·
3
Replies
68
Views
11K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 48 ·
2
Replies
48
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K