MHB What is the value for $a+b$ in the Polynomial Challenge VI?

Click For Summary
SUMMARY

The value of $a + b$, where $a$ and $b$ are the two largest real roots of the polynomial $f(x) = 3x^3 - 17x + 5\sqrt{6}$, is definitively expressed as $\frac{\sqrt{6} + \sqrt{186}}{6}$. This conclusion was reached through collaborative problem-solving, with participants confirming the correctness of the solution. The polynomial challenge emphasizes the importance of accuracy in mathematical submissions and peer review.

PREREQUISITES
  • Understanding of polynomial functions and their roots
  • Familiarity with algebraic manipulation of square roots
  • Knowledge of the Rational Root Theorem
  • Experience with collaborative problem-solving in mathematical contexts
NEXT STEPS
  • Study the properties of cubic polynomials and their roots
  • Learn about the Rational Root Theorem and its applications
  • Explore techniques for solving polynomial equations
  • Investigate methods for verifying mathematical solutions collaboratively
USEFUL FOR

Mathematicians, educators, and students engaged in advanced algebra and polynomial analysis will benefit from this discussion, particularly those interested in collaborative problem-solving techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $a,\,b$ are the two largest real roots of the polynomial $f(x)=3x^3-17x+5\sqrt{6}$, and their sum can be expressed as $\dfrac{\sqrt{m}+\sqrt{n}}{k}$ for positive integers $m,\,n,\,k$, find the value for $a+b$.
 
Mathematics news on Phys.org
Hint:

Try to think of a way to get rid of the $\sqrt{6}$ so that we could make full use of the rational root theorem to this hard challenge.
 
anemone said:
If $a,\,b$ are the two largest real roots of the polynomial $f(x)=3x^3-17x+5\sqrt{6}$, and their sum can be expressed as $\dfrac{\sqrt{m}+\sqrt{n}}{k}$ for positive integers $m,\,n,\,k$, find the value for $a+b$.

Since

$\displaystyle f(x\sqrt{6}) = \sqrt{6}(18x^3 - 17x + 5) = \sqrt{6}(3x - 1)(6x^2 + 2x - 5)$

has roots $\frac{1}{3}$, $\frac{-1 + \sqrt{31}}{6}$, and $\frac{-1 - \sqrt{31}}{6}$, the sum of the two largest roots is

$\displaystyle \frac{1}{3} + \frac{-1 + \sqrt{31}}{6} = \frac{1 + \sqrt{31}}{6}$.

Hence

$a + b = \sqrt{6} \cdot \frac{1+\sqrt{31}}{6} = \frac{\sqrt{6} + \sqrt{186}}{6}$.
 
Last edited:
anemone said:
If $a,\,b$ are the two largest real roots of the polynomial $f(x)=3x^3-17x+5\sqrt{6}$, and their sum can be expressed as $\dfrac{\sqrt{m}+\sqrt{n}}{k}$ for positive integers $m,\,n,\,k$, find the value for $a+b$.
my solution:
let $f(x)=(3x-p)(x-b)(x-c)=3x^3-17x+5\sqrt 6$
here $a=\dfrac {p}{3},b,c $ are three roots of $f(x)$
and $a>0,b>0,c<0$
for $a+b=\dfrac {p}{3}+b=\dfrac {\sqrt m+\sqrt n}{k}$
if $b=\dfrac {-\sqrt m+\sqrt n}{k}$ then $c=\dfrac {-\sqrt m-\sqrt n}{k}$
by comparing and observation we get $k=6$, and $ a=\dfrac {\sqrt m}{3}$
since $abc=\dfrac{\sqrt m}{3}(\dfrac {-\sqrt m+\sqrt n}{6})(\dfrac {-\sqrt m-\sqrt n}{6})$=$\dfrac{\sqrt m(n-m)}{108}=\dfrac {5\sqrt 6}{3}=\dfrac {180\sqrt 6}{108}$
$\therefore m=6,n=186$
$a+b=\dfrac{\sqrt 6+\sqrt {186}}{6}$
 
Last edited:
Well done, Euge for solving this problem in such an elegant way!

Bravo, Albert for showing us another route to tackle the problem!

Thank you both for participating.:)
 
Euge said:
Since

$\displaystyle f(x\sqrt{6}) = \sqrt{6}(18x^3 - 17x + 5) = \sqrt{6}(3x - 1)(6x^2 + 2x - 5)$

has roots $\frac{1}{3}$, $\frac{-1 + \sqrt{31}}{6}$, and $\frac{-1 - \sqrt{31}}{6}$, the sum of the two largest roots is

$\displaystyle \frac{1}{3} + \frac{-1 + \sqrt{31}}{6} = \frac{1 + \sqrt{31}}{6}$.

Hence

$a + b = \frac{1}{\sqrt{6}} \cdot \frac{1+\sqrt{31}}{6} = \frac{\sqrt{6}}{6} \cdot \frac{1 + \sqrt{31}}{6} = \frac{\sqrt{6} + \sqrt{186}}{36}$.
very good soluion ,but I think ,it should be:
$a + b ={\sqrt{6}} \cdot \frac{1+\sqrt{31}}{6}= \frac{\sqrt{6} + \sqrt{186}}{6}$
 
Albert said:
very good soluion ,but I think ,it should be:
$a + b ={\sqrt{6}} \cdot \frac{1+\sqrt{31}}{6}= \frac{\sqrt{6} + \sqrt{186}}{6}$

Yes, you're right. I have made the correction. Thank you.
 
Albert said:
very good soluion ,but I think ,it should be:
$a + b ={\sqrt{6}} \cdot \frac{1+\sqrt{31}}{6}= \frac{\sqrt{6} + \sqrt{186}}{6}$

I guess I owe you a thank because as the OP to this particular challenge, I should be the one who checked for the accuracy, typos, etc from the submissions of our members...:o

But I didn't do that very well, because whenever I read a solution, I would focus more on seeing the tactic or skill that one used and if the poster used the "correct" method, then I don't really read for the whole post, I know this is a very bad ethic and I would change to become a better me from now on.
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K