MHB What Is the Value of \(a_{1000}\) in This Sequence?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi members of the forum,

I am unable to determine the value of $$a_{1000}$$ in the problem as stated below because I think I failed to observe another useful pattern of the given sequence.

Could anyone please help me out with this problem? Thanks in advance.

Problem:
A sequence $$a_1$$, $$a_2$$, $$a_3,\;\cdots$$ of positive integers satisfies the following properties:

$$a_1=1$$

$$a_{3n+1}=2a_n+1$$

$$a_{n+1}\ge a_n$$

$$a_{2001}=200$$

Find the value of $$a_{1000}$$
 
Physics news on Phys.org
anemone said:
Hi members of the forum,

I am unable to determine the value of $$a_{1000}$$ in the problem as stated below because I think I failed to observe another useful pattern of the given sequence.

Could anyone please help me out with this problem? Thanks in advance.

Problem:
A sequence $$a_1$$, $$a_2$$, $$a_3,\;\cdots$$ of positive integers satisfies the following properties:

$$a_1=1$$

$$a_{3n+1}=2a_n+1$$

$$a_{n+1}\ge a_n$$

$$a_{2001}=200$$

Find the value of $$a_{1000}$$

The subsequence obeys to the difference equation...

$\displaystyle a_{k+1} = 2\ a_{k}+1,\ a_{1}=1$ (1)

... the solution of which is...

$\displaystyle a_{i}= 2^{k}-1$ (2)

... and the index obeys to the difference equation...

$i_{k+1}= 3\ i_{k}+1,\ i_{1}=1$ (3)

... the solution of which is...

$i_{k} = \frac{1}{2} (3^{k}-1)$ (4)

Now we plot the sequence $a_{i}$ ...

$\displaystyle a_{1}=1,\ a_{4}= 3,\ a_{13}= 7,\ a_{40}= 15,\ a_{121}= 31,\ a_{364} = 63,\ a_{1093}= 127,\ ...$ (5)

Now, observing (5), all what we can say about $a_{1000}$ is [for the moment...] $63 \le a_{1000} \le 127$ ...

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
The subsequence obeys to the difference equation...

$\displaystyle a_{k+1} = 2\ a_{k}+1,\ a_{1}=1$ (1)

... the solution of which is...

$\displaystyle a_{i}= 2^{k}-1$ (2)

... and the index obeys to the difference equation...

$i_{k+1}= 3\ i_{k}+1,\ i_{1}=1$ (3)

... the solution of which is...

$i_{k} = \frac{1}{2} (3^{k}-1)$ (4)

Now we plot the sequence $a_{i}$ ...

$\displaystyle a_{1}=1,\ a_{4}= 3,\ a_{13}= 7,\ a_{40}= 15,\ a_{121}= 31,\ a_{364} = 63,\ a_{1093}= 127,\ ...$ (5)

Now, observing (5), all what we can say about $a_{1000}$ is [for the moment...] $63 \le a_{1000} \le 127$ ...

Kind regards

$\chi$ $\sigma$

Hi chisigma, thank you so much for replying to this problem. But do you mean to say we could in the next step to determine what the integer value of $$a_{1000} is$$?:confused:
 
Given that $a_{2001} = 200$, it follows that $a_{2002}\geqslant 200$. But $2002 = 3*667 + 1$, so $a_{2002} = 2a_{667}+1$. Therefore $2a_{667}+1\geqslant 200$, and $a_{667}\geqslant \frac12(199) = 99.5.$ But $a_{667}$ is an integer, and so $a_{667}\geqslant 100$. Repeating that chain of deductions, you see that $a_{223} \geqslant 50$, $a_{74} \geqslant 25$, $a_{25}\geqslant 12$, $a_8\geqslant7.$ But $a_{13}=7$ (see chisigma's post above), and so $a_8\leqslant7.$ Thus $a_8=7$, and in fact $a_n=7$ for each $n$ between $8$ and $13$ inclusive.

Next, $3*8+1=25$, so $a_{25} = 2a_8+1 = 15$, and in fact $a_n=15$ for each $n$ between $25$ and $40$ inclusive. Continue in that way to see that $a_n=31$ for each $n$ between $76$ and $121$, $a_n=63$ for each $n$ between $229$ and $364$, $a_n=127$ for each $n$ between $668$ and $1093$. In particular, $a_{1000} = 127.$
 
anemone said:
Hi chisigma, thank you so much for replying to this problem. But do you mean to say we could in the next step to determine what the integer value of $$a_{1000} is$$?:confused:

We can extrapolate the result writing...

$\displaystyle \ln (y+1) \sim \ln 2x \frac{\ln 2}{\ln 3} \sim .6309 \ln 2x$ (1)

... and that leads to...

$a_{31} \sim 30.9$

$a_{364} \sim 62.9$

$a_{1093} \sim 126,9$

... so that we could conclude that...

$a_{1000} \sim 119.9$

Unfortunately the 'extra information' $a_{2001}= 200$ is not coherent with (1) because it should be $a_{2001} \sim 186.4$ (Thinking)...

Kind regards

$\chi$ $\sigma$
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
2
Views
3K
Replies
9
Views
3K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
6
Views
3K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top