A What kind of topology change does this Lorentzian metric describe?

Onyx
Messages
141
Reaction score
4
TL;DR Summary
What kind of topology change does this Lorentzian metric describe?
Looking at this paper, what sort of spatial topology change does the lorentzian metric (the first one presented) describe? Does it describe the transition from spatial connectedness to disconnectedness with time? All I know is that there is some topology change involved, but I don’t see the paper specifying what kind. Also, why is ##t## periodic? That seems very unusual to me.
 
Physics news on Phys.org
Which one do you call the first example? The one that says that it is Wheeler's beloved wormhole? Then it describes the change from nothing to a wormhole ##S^1\times S^2##.
 
No, when I say the first example, I mean number 7, the Lorentzian metric with the off-diagonal entries.
 
Onyx said:
No, when I say the first example, I mean number 7, the Lorentzian metric with the off-diagonal entries.
That is the same example!
 
martinbn said:
That is the same example!
Oh, my bad.
 
Onyx said:
Oh, my bad.
Well then I suppose ##t=0## represents nothing and ##t=1## represents the ##S^3## wormhole having formed.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top